Выпуски

 / 

1997

 / 

Ноябрь

  

Обзоры актуальных проблем


Гамильтоновский формализм для нелинейных волн

,
Институт теоретической физики им. Л.Д. Ландау РАН, ул. Косыгина 2, Москва, 119334, Российская Федерация

Представлен обзор по гамильтоновскому описанию систем гидродинамического типа для плазмы, гидродинамики и магнитной гидродинамики. Основное внимание уделяется проблеме введения канонических переменных. Указана связь с другими способами введения гамильтоновской структуры, в частности, с помощью скобок Пуассона, выраженных в естественных переменных. Показано, что вырожденность неканонических скобок Пуассона связана с существованием симметрии — группы переобозначений лагранжевых маркеров жидких частиц. Все известные теоремы о сохранении вихря (теоремы Коши, Эртеля, Томсона (Кельвина), вмороженности и сохранения топологического инварианта Хопфа) являются следствием данной симметрии. Введены канонические переменные в бесстолкновительную кинетику плазмы. Обсуждается вопрос о гамильтоновских структурах уравнений Бенни и уравнения, описывающего волны Россби. Введена гамильтоновская структура в уравнение Деви-Стюартсона. Представлен также общий метод исследования слабонелинейных волн, основанный на классической теории возмущений и редукции гамильтонианов.

Текст pdf (991 Кб)
English fulltext is available at DOI: 10.1070/PU1997v040n11ABEH000304
PACS: 52.30.−q, 52.35.Ra, 52.55.Fa (все)
DOI: 10.3367/UFNr.0167.199711a.1137
URL: https://ufn.ru/ru/articles/1997/11/a/
000071302300001
Цитата: Захаров В Е, Кузнецов Е А "Гамильтоновский формализм для нелинейных волн" УФН 167 1137–1167 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

English citation: Zakharov V E, Kuznetsov E A “Hamiltonian formalism for nonlinear wavesPhys. Usp. 40 1087–1116 (1997); DOI: 10.1070/PU1997v040n11ABEH000304

Список литературы (85) Статьи, ссылающиеся на эту (267) ↓ Похожие статьи (20)

  1. Gurchenkov A A, Matveev I A Physics 6 426 (2024)
  2. Fukumoto Ya, Zou R 2024 (3) (2024)
  3. Gubarev Yu G, Kotelnikova M S jour 166 36 (2024)
  4. Sedletsky Yu V, Gandzha I S Proc. R. Soc. A. 479 (2277) (2023)
  5. Zheltikov A M Optics Communications 546 129766 (2023)
  6. Abrashkin A A, Pelinovsky E N Theor Math Phys 215 599 (2023)
  7. Smirnov S, Podivilov E, Sturman B Photonics 10 640 (2023)
  8. Bibilova S A, Gubarev Y G Acta Appl Math 187 (1) (2023)
  9. Pezzutto P, Shrira V I J. Fluid Mech. 972 (2023)
  10. Knyazev D V Comp. Contin. Mech. 16 150 (2023)
  11. Machado M G, Abanov A G, Ganeshan S SciPost Phys. 14 (5) (2023)
  12. Markov Yu A, Markova M  A, Markov N  Yu Int. J. Mod. Phys. A 38 (02) (2023)
  13. (11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES) Vol. 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCESStudy of the stability for three-dimensional states of dynamic equilibrium of the electron Vlasov-Poisson gasYuriy G.GubarevYangLiu2872 (2023) p. 060024
  14. Agafontsev D S, Kuznetsov E A et al Phys.-Usp. 65 189 (2022)
  15. Gönül Ş, Özemir C Chaos, Solitons & Fractals 165 112807 (2022)
  16. Rumpf B, Lvov Yu V Fluids 7 122 (2022)
  17. Abrashkin A A, Pelinovsky E N Успехи физических наук 192 491 (2022)
  18. [Abrashkin A A, Pelinovsky E N Phys. Usp. 65 453 (2022)]
  19. Ludu A Nonlinear Waves and Solitons on Contours and Closed Surfaces Springer Series in Synergetics Chapter 9 (2022) p. 203
  20. Webb G M, Anco S C et al J. Plasma Phys. 88 (4) (2022)
  21. Abanov A  G, Wiegmann P  B Phys. Rev. Lett. 128 (5) (2022)
  22. Chong Ch L Physica D: Nonlinear Phenomena 433 133164 (2022)
  23. Gönül Ş, Özemir C Eur. Phys. J. Plus 137 (10) (2022)
  24. Sedletsky Yu V, Gandzha I S Phys. Rev. E 106 (6) (2022)
  25. Malkin V M, Fisch N J Phys. Rev. E 105 (4) (2022)
  26. Wiegmann P B, Abanov A G J. High Energ. Phys. 2022 (6) (2022)
  27. Kochurin E A, Kuznetsov E A Jetp Lett. 116 863 (2022)
  28. Markov Yu A, Markova M A, Markov N Yu Russ Phys J 64 2246 (2022)
  29. Grosvenor K T, Hoyos C et al Phys. Rev. Research 3 (4) (2021)
  30. Grimberg G, Tassi E EPJ H 46 (1) (2021)
  31. Vakhnenko O O JNMP 24 250 (2021)
  32. Kopiev V F, Chernyshev S A Acoust. Phys. 67 83 (2021)
  33. Yang Sh, Xiong Sh et al ACM Trans. Graph. 40 1 (2021)
  34. Gu Ya-Ju, Bulanov S V High Pow Laser Sci Eng 9 (2021)
  35. Maltsev A Ya, Novikov S P J. Exp. Theor. Phys. 132 645 (2021)
  36. Yahalom A Symmetry 13 1632 (2021)
  37. Abali B E, Klunker A et al Z Angew Math Mech 101 (9) (2021)
  38. Spiller D, Brunk A et al J. Phys.: Condens. Matter 33 364001 (2021)
  39. Shashikanth B N Dynamically Coupled Rigid Body-Fluid Flow Systems Chapter 6 (2021) p. 133
  40. Campolina C S, Mailybaev A A Nonlinearity 34 4684 (2021)
  41. Yang Sh, Xiong Sh et al ACM Trans. Graph. 40 1 (2021)
  42. Pavlov V P, Sergeev V M, Shamin R V Theor Math Phys 208 926 (2021)
  43. Chong Ch L Journal of Non-Newtonian Fluid Mechanics 292 104537 (2021)
  44. Gubarev Yu G, Sun S J. Phys.: Conf. Ser. 1730 012069 (2021)
  45. Krishnaswami G S, Phatak S S et al 10 (2) (2020)
  46. Abanov A G, Can T et al Phys. Rev. Fluids 5 (10) (2020)
  47. Zubareva O V, Zubarev N M, Bobrov K E J. Phys.: Conf. Ser. 1556 012015 (2020)
  48. Gubarev Yu G Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy Chapter 21 (2020) p. 161
  49. Machon T Proc. R. Soc. A. 476 20190851 (2020)
  50. Malkin V M, Fisch N J Phys. Rev. E 101 (2) (2020)
  51. Gültekin Ö, Gürcan Ö D Plasma Phys. Control. Fusion 62 025018 (2020)
  52. Cullen J, Ivanov R European Journal of Mechanics - B/Fluids 84 325 (2020)
  53. Piterbarg L I Theor Math Phys 202 412 (2020)
  54. Gürcan Ö D, Li Ya, Morel P Mathematics 8 530 (2020)
  55. Kuznetsov E A, Mikhailov E A J. Exp. Theor. Phys. 131 496 (2020)
  56. Yushkov V P Moscow Univ. Phys. 75 547 (2020)
  57. Xiong Sh, Yang Yu J. Fluid Mech. 895 (2020)
  58. Gerdjikov V S, Smirnov A O, Matveev V B Eur. Phys. J. Plus 135 (8) (2020)
  59. Zubarev N M, Zubareva O V J. Phys.: Conf. Ser. 1556 012014 (2020)
  60. Sedletsky Yu V, Gandzha I  S Phys. Rev. E 102 (2) (2020)
  61. Khazanov E A, Mironov S Yu, Mourou G Успехи физических наук 189 1173 (2019) [Khazanov E A, Mironov S Yu, Mourou G Phys.-Usp. 62 1096 (2019)]
  62. Gubarev Yu G Plasma Res. Express 1 045008 (2019)
  63. Yahalom A J. Phys.: Conf. Ser. 1416 012041 (2019)
  64. Dyachenko A I, Lushnikov P M, Zakharov V E J. Fluid Mech. 869 526 (2019)
  65. (MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019)) Vol. MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019)Conservation laws in magnetohydrodynamics and fluid dynamics: Lagrangian approachGary M.WebbStephen C.Anco2153 (2019) p. 020024
  66. Yahalom A J. Phys.: Conf. Ser. 1194 012113 (2019)
  67. Abrashkin A Deep Sea Research Part II: Topical Studies in Oceanography 160 3 (2019)
  68. Vedenyapin V V, Fimin N N, Chechetkin V M Comput. Math. and Math. Phys. 59 1816 (2019)
  69. Dullin H R, Meiss J D, Worthington J J. Phys. A: Math. Theor. 52 365501 (2019)
  70. McKeever B F, Rodrigues D R et al Phys. Rev. B 99 (5) (2019)
  71. Abrashkin A J. Math. Fluid Mech. 21 (2) (2019)
  72. Abanov A G, Monteiro G M Phys. Rev. Lett. 122 (15) (2019)
  73. Sato N, Yamada M J. Fluid Mech. 876 896 (2019)
  74. Buffoni B, Groves M D, Wahlén E Arch Rational Mech Anal 228 773 (2018)
  75. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsIntroduction946 Chapter 1 (2018) p. 1
  76. Vedenyapin V V, Kazakova T S et al Dokl. Math. 97 240 (2018)
  77. Krafft C, Volokitin A S 25 (10) (2018)
  78. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsMulti-Symplectic Clebsch Approach946 Chapter 9 (2018) p. 167
  79. Yahalom A Fluid Dyn. Res. 50 011406 (2018)
  80. Vakhnenko O O Lett Math Phys 108 1807 (2018)
  81. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsHelicity in Fluids and MHD946 Chapter 3 (2018) p. 21
  82. Vedenyapin V V, Andreeva A A, Vorobyeva V V Dokl. Math. 97 283 (2018)
  83. Campolina C S, Mailybaev A A Phys. Rev. Lett. 121 (6) (2018)
  84. Yahalom A Springer Proceedings in Mathematics & Statistics Vol. Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2Metage Symmetry Group of Non-barotropic Magnetohydrodynamics and the Conservation of Cross Helicity255 Chapter 30 (2018) p. 387
  85. Shen L Q, Zhou L F et al Phys. Rev. B 97 (22) (2018)
  86. Kopiev V F, Chernyshev S A Acoust. Phys. 64 707 (2018)
  87. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsHamiltonian Approach946 Chapter 8 (2018) p. 137
  88. Webb G Lecture Notes in Physics Vol. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation LawsAdvected Invariants946 Chapter 5 (2018) p. 53
  89. Vakhnenko O O 59 (5) (2018)
  90. Abrashkin A A, Pelinovsky E N Успехи физических наук 188 329 (2018)
  91. Gelash A A, L’vov V S, Zakharov V E J. Fluid Mech. 831 128 (2017)
  92. Miloshevich G, Lingam M, Morrison P J New J. Phys. 19 015007 (2017)
  93. Vakhnenko O O Applied Mathematics Letters 64 81 (2017)
  94. Horikis T P, Frantzeskakis D J Phys. Rev. Lett. 118 (24) (2017)
  95. Besse N, Frisch U J. Fluid Mech. 825 412 (2017)
  96. Yahalom A Geophysical & Astrophysical Fluid Dynamics 111 131 (2017)
  97. Vakhnenko O O Ukr. J. Phys. 62 271 (2017)
  98. Benilov E S, Benilov M S Phys. Rev. E 96 (4) (2017)
  99. Banerjee D, Souslov A et al Nat Commun 8 (1) (2017)
  100. Sen A Fluids 2 28 (2017)
  101. Christov I C, Kress T, Saxena A Int. J. Mod. Phys. B 31 1742008 (2017)
  102. Dutykh D, Clamond D et al Math. Model. Nat. Phenom. 12 23 (2017)
  103. Chern A, Knöppel F et al ACM Trans. Graph. 36 1 (2017)
  104. Camassa R, Falqui G, Ortenzi G Nonlinearity 30 466 (2017)
  105. Kuznetsov E A Jetp Lett. 105 125 (2017)
  106. Webb G M, Anco S C J. Phys. A: Math. Theor. 50 255501 (2017)
  107. Nishiyama S, da Providência J Int. J. Mod. Phys. E 26 1750020 (2017)
  108. Ludu A Boundaries of a Complex World Springer Series in Synergetics Chapter 1 (2016) p. 3
  109. Amiranashvili Sh Lecture Notes in Physics Vol. New Approaches to Nonlinear WavesHamiltonian Framework for Short Optical Pulses908 Chapter 6 (2016) p. 153
  110. Webb G M, Anco S C J. Phys. A: Math. Theor. 49 075501 (2016)
  111. Onorato M, Baronio F et al Lecture Notes in Physics Vol. Rogue and Shock Waves in Nonlinear Dispersive MediaHydrodynamic and Optical Waves: A Common Approach for Unidimensional Propagation926 Chapter 1 (2016) p. 1
  112. Grebenev V N, Oberlack M et al 57 (10) (2016)
  113. Ludu A Boundaries of a Complex World Springer Series in Synergetics Chapter 9 (2016) p. 245
  114. Clamond D, Dutykh D Lecture Notes in Physics Vol. New Approaches to Nonlinear WavesModeling Water Waves Beyond Perturbations908 Chapter 7 (2016) p. 197
  115. Hall M J W, Reginatto M Fundamental Theories of Physics Vol. Ensembles on Configuration SpaceIntroduction184 Chapter 1 (2016) p. 3
  116. Yahalom A J. Plasma Phys. 82 (2) (2016)
  117. Romanova N N, Chkhetiani O G, Yakushkin I G J. Exp. Theor. Phys. 122 902 (2016)
  118. Gu Y J, Klimo O et al Phys. Rev. E 93 (1) (2016)
  119. Cherubini Ch, Filippi S Commun. Comput. Phys. 19 758 (2016)
  120. Vakhnenko O O 57 (11) (2016)
  121. Matsuno Y Proc. R. Soc. A. 472 20160127 (2016)
  122. Gu Y J, Yu Q et al High Pow Laser Sci Eng 4 (2016)
  123. Monteiro G M, Abanov A G, Nair V  P Phys. Rev. D 91 (12) (2015)
  124. (Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II) Vol. Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IIMagnetic reconnection research with petawatt-class lasersGeorgKornLuis O.SilvaYanjunGuOndřejKlimoDeepakKumarYueLiuSushilSinghSergei V.BulanovTimur Z.EsirkepovStefanWeberGeorgKorn9515 (2015) p. 95151H
  125. Ignatov A M Plasma Phys. Rep. 41 783 (2015)
  126. Webb G M, McKenzie J F, Zank G P J. Plasma Phys. 81 (6) (2015)
  127. Gürcan Ö D, Diamond P H J. Phys. A: Math. Theor. 48 293001 (2015)
  128. Aseeva N V, Gromov E M, Tyutin V V Radiophys Quantum El 58 209 (2015)
  129. Webb G M 56 (5) (2015)
  130. Kalashnikova A M, Kimel A V, Pisarev R V Успехи физических наук 185 1064 (2015) [Kalashnikova A M, Kimel A V, Pisarev R V Phys.-Usp. 58 969 (2015)]
  131. Moroz S, Hoyos C Phys. Rev. B 91 (6) (2015)
  132. Tanehashi K, Yoshida Z J. Phys. A: Math. Theor. 48 495501 (2015)
  133. Gu Y J, Klimo O et al 22 (10) (2015)
  134. Yushkov V P Moscow Univ. Phys. 70 217 (2015)
  135. Webb G M, McKenzie J F, Zank G P J. Plasma Phys. 80 707 (2014)
  136. Frisch U, Villone B EPJ H 39 325 (2014)
  137. Kovriguine D A Arch Appl Mech 84 159 (2014)
  138. Zubarev N M, Kuznetsov E A J. Exp. Theor. Phys. 119 169 (2014)
  139. Ruban V P Jetp Lett. 99 124 (2014)
  140. Camassa R, Chen S et al J. Fluid Mech. 743 534 (2014)
  141. Camassa R, Falqui G et al J. Phys.: Conf. Ser. 482 012006 (2014)
  142. Turchetti G, Sinigardi S, Londrillo P Eur. Phys. J. D 68 (12) (2014)
  143. Frewer M, Oberlack M, Grebenev V N Math Phys Anal Geom 17 3 (2014)
  144. Webb G M, Dasgupta B et al J. Phys. A: Math. Theor. 47 095502 (2014)
  145. Webb G M, Dasgupta B et al J. Phys. A: Math. Theor. 47 095501 (2014)
  146. Prakash Ja, Lavrenteva O M, Nir A 26 (7) (2014)
  147. Perin M, Chandre C et al Annals of Physics 348 50 (2014)
  148. Lyutikov M Phys. Rev. E 88 (5) (2013)
  149. Sultana Sh, Rahman Z OJFD 03 75 (2013)
  150. Makarov V A, Petnikova V M et al Phys. Wave Phen. 21 264 (2013)
  151. Camassa R, Chen S et al J. Fluid Mech. 726 404 (2013)
  152. Dvornikov M J. Phys. A: Math. Theor. 46 045501 (2013)
  153. Abanov A G J. Phys. A: Math. Theor. 46 292001 (2013)
  154. Chandre C, de Guillebon L et al J. Phys. A: Math. Theor. 46 125203 (2013)
  155. Lakhturov I, Adytia D, van Groesen E Wave Motion 49 309 (2012)
  156. Kulkarni M, Abanov A G Phys. Rev. A 86 (3) (2012)
  157. de Guillebon L, Chandre C Physics Letters A 376 3172 (2012)
  158. Gibbon J D, Holm D D Mathematical Aspects of Fluid Mechanics 1 9 (2012) p. 201
  159. Clamond D, Dutykh D Physica D: Nonlinear Phenomena 241 25 (2012)
  160. Zakharov V E, Kuznetsov E A Uspekhi Fizicheskikh Nauk 182 569 (2012) [Zakharov V E, Kuznetsov E A Phys.-Usp. 55 535 (2012)]
  161. Webb G M, Hu Q et al J. Phys. A: Math. Theor. 45 025203 (2012)
  162. Dvornikov M Found Phys 42 1469 (2012)
  163. Chandre C, Morrison P J, Tassi E Physics Letters A 376 737 (2012)
  164. Rassmusen A R, Sørensen M P et al Acta Appl Math 115 43 (2011)
  165. Amiranashvili Sh, Demircan A Advances in Optical Technologies 2011 1 (2011)
  166. Felderhof B U, Sokolov V V, Éminov P A 135 (14) (2011)
  167. Nazarenko S Lecture Notes in Physics Vol. Wave TurbulenceMagneto-Hydrodynamic Turbulence825 Chapter 14 (2011) p. 209
  168. Kuznetsov E A, Dias F Physics Reports 507 43 (2011)
  169. Nazarenko S V Lecture Notes in Physics Vol. Wave TurbulenceWave Turbulence Formalism825 Chapter 6 (2011) p. 67
  170. Sokolov V V, Fotov K N, Eminov P A Dokl. Phys. 56 467 (2011)
  171. Yahalom A Europhys. Lett. 89 34005 (2010)
  172. Sokolov V V, Fotov K N, Eminov P A Russ Phys J 53 732 (2010)
  173. Brio M, Webb G M, Zakharian A R Mathematics in Science and Engineering Vol. Numerical Time-Dependent Partial Differential Equations for Scientists and EngineersProblems with Multiple Temporal and Spatial Scales213 (2010) p. 175
  174. Mathematics in Science and Engineering Vol. Numerical Time-Dependent Partial Differential Equations for Scientists and EngineersBibliography213 (2010) p. 273
  175. Zubarev N M, Zubareva O V Phys. Rev. E 82 (4) (2010)
  176. Ruban V P J. Exp. Theor. Phys. 111 776 (2010)
  177. Amiranashvili Sh, Demircan A Phys. Rev. A 82 (1) (2010)
  178. Rasmussen A R, Sørensen M P et al Mathematics in Industry Vol. Progress in Industrial Mathematics at ECMI 2008Analytical and Numerical Modelling of Thermoviscous Shocks and Their Interactions in Nonlinear Fluids Including Dissipation15 Chapter 159 (2010) p. 997
  179. Webb G M, Hu Q et al J. Geophys. Res. 115 (A10) (2010)
  180. Nakamura T, Bulanov S V et al Phys. Rev. Lett. 105 (13) (2010)
  181. Levich E Old and New Concepts of Physics 6 239 (2009)
  182. Zubarev N M Jetp Lett. 89 271 (2009)
  183. Jin-Zhang P, Hong Ya, Yi T Chinese Phys. B 18 2364 (2009)
  184. Kharif Ch, Pelinovsky E, Slunyaev A Rogue Waves in the Ocean Advances in Geophysical and Environmental Mechanics and Mathematics Chapter 3 (2009) p. 33
  185. Dünweg B, Ladd A J C Advanced Computer Simulation Approaches for Soft Matter Sciences III Chapter 2 (2009) p. 89
  186. Ковалевский М Ю, Kovalevsky M Yu и др ТМФ 158 277 (2009) [Kovalevskii M Yu, Matskevich V T, Razumnyi A Ya Theor Math Phys 158 233 (2009)]
  187. Sokolov V V, Tolmachev V V, Éminov P A Dokl. Phys. 54 488 (2009)
  188. Petnikova V M, Shuvalov V V Phys. Rev. E 79 (2) (2009)
  189. Gordeev A V, Losseva T V Plasma Phys. Rep. 35 118 (2009)
  190. Kalashnikova A M, Kimel A V et al Phys. Rev. B 78 (10) (2008)
  191. KUZNETSOV E A J. Fluid Mech. 600 167 (2008)
  192. Romanova N N Izv. Atmos. Ocean. Phys. 44 53 (2008)
  193. Petnikova V M, Shuvalov V V Quantum Electron. 38 1135 (2008)
  194. Maksimov A O J. Exp. Theor. Phys. 106 355 (2008)
  195. Zubarev N M J. Exp. Theor. Phys. 107 668 (2008)
  196. Radu E, Volkov M S Physics Reports 468 101 (2008)
  197. Gibbon J D Physica D: Nonlinear Phenomena 237 1894 (2008)
  198. Shivamoggi B K, van Heijst G J F Physics Letters A 372 5688 (2008)
  199. YAHALOM ASHER, LYNDEN-BELL DONALD J. Fluid Mech. 607 235 (2008)
  200. Gutshabash E Sh J Math Sci 143 2765 (2007)
  201. Romanova N N, Yakushkin I G Izv. Atmos. Ocean. Phys. 43 533 (2007)
  202. Sedletsky Yu V Jetp Lett. 86 502 (2007)
  203. Гиббон Дж, Gibbon J УМН 62 47 (2007)
  204. Agafontsev D S, Dias F, Kuznetsov E A Physica D: Nonlinear Phenomena 225 153 (2007)
  205. Petnikova V M, Shuvalov V V Phys. Rev. E 76 (4) (2007)
  206. Belmont G, Sahraoui F, Rezeau L Advances in Space Research 37 1503 (2006)
  207. Agafontsev D S, Dias F, Kuznetsov E A Jetp Lett. 83 201 (2006)
  208. Kuznetsov E A JNMP 13 64 (2006)
  209. Protogenov A P Uspekhi Fizicheskikh Nauk 176 689 (2006)
  210. Morrison P J Encyclopedia of Mathematical Physics (2006) p. 593
  211. Sedletsky Yu V J. Phys. A: Math. Gen. 39 L529 (2006)
  212. Kalashnik M V, Ingel L Kh J. Exp. Theor. Phys. 103 141 (2006)
  213. Sedletsky Yu V Physics Letters A 343 293 (2005)
  214. Eshraghi H, Abedini Y 46 (4) (2005)
  215. Dolzhanskii F V Uspekhi Fizicheskikh Nauk 175 1257 (2005)
  216. Kats A V Phys. Rev. E 69 (4) (2004)
  217. Kuznetsov E A, Passot T, Sulem P L 11 1410 (2004)
  218. Hall M J W J. Phys. A: Math. Gen. 37 7799 (2004)
  219. Prix R Phys. Rev. D 69 (4) (2004)
  220. Khomeriki R, Tkeshelashvili L J. Opt. Soc. Am. B 21 2175 (2004)
  221. Доброхотов С Ю, Dobrokhotov S Yu и др ТМФ 139 62 (2004)
  222. Ruban V P Phys. Rev. E 70 (6) (2004)
  223. Ignatov A M Plasma Phys. Rep. 30 44 (2004)
  224. Ruban V P, Senchenko S L Phys. Scr. 69 227 (2004)
  225. Sedletsky Yu V J. Exp. Theor. Phys. 97 180 (2003)
  226. Ruban V P Phys. Rev. E 68 (4) (2003)
  227. Ruban V P Phys. Rev. E 67 (6) (2003)
  228. Annenkov S Yu, Romanova N N Dokl. Phys. 48 441 (2003)
  229. Kats A V Jetp Lett. 77 657 (2003)
  230. Sahraoui F, Belmont G, Rezeau L 10 1325 (2003)
  231. Isaev L S, Protogenov A P J. Exp. Theor. Phys. 96 1140 (2003)
  232. Dellar P J 10 581 (2003)
  233. Ruban V P, Juul R J Phys. Rev. E 68 (5) (2003)
  234. Garnier J, Cherfils-Clérouin C, Holstein P -A Phys. Rev. E 68 (3) (2003)
  235. Dellar P J 9 1130 (2002)
  236. Protogenov A P, Verbus V A Jetp Lett. 76 53 (2002)
  237. Holm D D Geometry, Mechanics, and Dynamics Chapter 4 (2002) p. 169
  238. Ruban V P Phys. Rev. E 65 (4) (2002)
  239. Romanova N N, Yakushkin I G Dokl. Phys. 46 742 (2001)
  240. Ruban V P, Podolsky D I Phys. Rev. D 64 (4) (2001)
  241. Kuznetsov E A J. Exp. Theor. Phys. 93 1052 (2001)
  242. Zubarev N M, Zubareva O V Tech. Phys. 46 806 (2001)
  243. Ruban V P, Podolsky D I, Rasmussen J J Phys. Rev. E 63 (5) (2001)
  244. Bogdanov A V, Stankova E N Lecture Notes in Computer Science Vol. High-Performance Computing and NetworkingThe Use of Intrinsic Properties of Physical System for Derivation of High-Performance Computational Algorithms2110 Chapter 21 (2001) p. 204
  245. Ruban V P Phys. Rev. E 64 (3) (2001)
  246. Kats A V Physica D: Nonlinear Phenomena 152-153 459 (2001)
  247. Ruban V P Phys. Rev. D 62 (12) (2000)
  248. Son D T Phys. Rev. Lett. 84 3771 (2000)
  249. Доброхотов С Ю, Dobrokhotov S Yu ТМФ 125 491 (2000)
  250. V S D Physica D: Nonlinear Phenomena 139 186 (2000)
  251. Graham C R, Henyey F S 12 744 (2000)
  252. Ruban V P Phys. Rev. E 62 4950 (2000)
  253. Kuznetsov E A, Ruban V P Phys. Rev. E 61 831 (2000)
  254. Kuznetsov E A, Zakharov V E Lecture Notes in Physics Vol. Nonlinear Science at the Dawn of the 21st CenturyNonlinear Coherent Phenomena in Continuous Media542 Chapter 1 (2000) p. 3
  255. Kuznetsov E A, Ruban V P J. Exp. Theor. Phys. 91 775 (2000)
  256. Zaiko Yu N Tech. Phys. Lett. 26 889 (2000)
  257. Kuznetsov E A J. Exp. Theor. Phys. 89 163 (1999)
  258. Kuznetsov E A, Ruban V P J. Exp. Theor. Phys. 88 492 (1999)
  259. Yoshikawa T, Balk A M Physics Letters A 251 184 (1999)
  260. Rylov Yu A 40 256 (1999)
  261. Ruban V P J. Exp. Theor. Phys. 89 299 (1999)
  262. Kuznetsov E A Optical Solitons: Theoretical Challenges and Industrial Perspectives Chapter 3 (1999) p. 31
  263. Kuznetsov E A, Ruban V P Lecture Notes in Physics Vol. Nonlinear MHD Waves and TurbulenceDynamics of Vortex and Magnetic Lines in Ideal Hydrodynamics and MHD536 Chapter 14 (1999) p. 346
  264. Kuznetsov E A, Ruban V P Jetp Lett. 67 1076 (1998)
  265. Vol. MMET Conference Proceedings. 1998 International Conference on Mathematical Methods in Electromagnetic Theory. MMET 98 (Cat. No.98EX114)Hamiltonian approach to the problem of wave collapseV.V.Gushchin1 (1998) p. 266
  266. Zakharov V E, Kuznetsov E A J. Exp. Theor. Phys. 86 1035 (1998)
  267. Berning M, Rubenchik A M 10 1564 (1998)

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение