Выпуски

 / 

2022

 / 

Май

  

Обзоры актуальных проблем


Управление состояниями в сверхпроводниковых квантовых процессорах

 а,  б,  а, в,  а, б,  г,  г,  г,  г, д
а Московский государственный университет имени М. В. Ломоносова, Воробьевы горы, Москва, 119991, Российская Федерация
б Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, просп. Гагарина 23, Нижний Новгород, 603950, Российская Федерация
в Московский технический университет связи и информатики, ул. Авиамоторная 8а, Москва, 111024, Российская Федерация
г Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, Сущевская ул. 22, Москва, 119017, Российская Федерация
д Национальный исследовательский университет «Высшая школа экономики», ул. Мясницкая 20, Москва, 101000, Российская Федерация

Освещены последние достижения в области разработки сверхпроводниковых кубитов и квантовых цепей, предназначенных для создания нового поколения квантовых процессоров. Особое внимание уделяется анализу методов управления многокубитными системами — многочастичными квантовыми системами с настраиваемыми, в том числе in situ, параметрами отдельных элементов и связей между ними. Показано, как решение фундаментальных физических задач в этой области (например, о взаимодействии искусственного атома с сильными и короткими импульсами поля) позволяет увеличивать эффективность существующих квантовых процессоров при реализации конкретных алгоритмов.

Текст pdf (1006 Кб)
К читателям журнала Успехи физических наук pdf (98 Кб)
To the readers of Physics-Uspekhi pdf (88 Кб)
English fulltext pdf (1,3 Мб)
English fulltext is available at DOI: 10.3367/UFNe.2021.02.038934
Ключевые слова: квантовые операции, сверхпроводимость, эффект Джозефсона, квантовые алгоритмы
PACS: 03.67.Lx, 03.75.Lm, 42.50.Dv, 85.25.Cp (все)
DOI: 10.3367/UFNr.2021.02.038934
URL: https://ufn.ru/ru/articles/2022/5/a/
001112520100001
2-s2.0-85182875931
2022PhyU...65..421V
Цитата: Вожаков В А, Бастракова М В, Кленов Н В, Соловьев И И, Погосов В В, Бабухин Д В, Жуков А А, Сатанин А М "Управление состояниями в сверхпроводниковых квантовых процессорах" УФН 192 457–476 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 8 декабря 2020, доработана: 11 февраля 2021, 17 февраля 2021

English citation: Vozhakov V A, Bastrakova M V, Klenov N V, Soloviev I I, Pogosov W V, Babukhin D V, Zhukov A A, Satanin A M “State control in superconducting quantum processorsPhys. Usp. 65 421–439 (2022); DOI: 10.3367/UFNe.2021.02.038934

Список литературы (150) ↓ Статьи, ссылающиеся на эту (22) Похожие статьи (20)

  1. DiVincenzo D P Fortschr. Phys. 48 9 (2000)
  2. Dowling J P, Milburn G J Philos. Trans. R. Soc. A 361 1809 (2003)
  3. Ladd T et al Nature 464 7285 (2010)
  4. Krantz P et al Appl. Phys. Rev. 6 2 (2019)
  5. Kjaergaard M et al Annu. Rev. Condens. Matter Phys. 11 369 (2020)
  6. Blatt J M, Weisskopf V F Theoretical Nuclear Physics (New York: Wiley, 1952); Пер. на русск. яз., Блатт Дж, Вайскопф В Теоретическая ядерная физика (М.: ИЛ, 1954)
  7. Arute F et al Nature 574 505 (2019)
  8. Clarke J, Wilhelm F K Nature 453 1031 (2008)
  9. Bouchiat V et al Phys. Scr. 176 165 (1998)
  10. Nakamura Y, Pashkin Y A, Tsai J S Nature 398 786 (1999)
  11. Mooij J E et al Science 285 1036 (1999)
  12. Chiorescu I et al Science 299 1869 (2003)
  13. Martinis J M et al Phys. Rev. Lett. 89 117901 (2002)
  14. Martinis J M Quantum Inf. Process. 8 81 (2009)
  15. Vion D et al Science 296 886 (2002)
  16. Manucharyan V E et al Science 326 113 (2009)
  17. Koch J et al Phys. Rev. A 76 042319 (2007)
  18. Babu A P, Tuorila J, Ala-Nissila T npj Quantum Inf. 7 30 (2021)
  19. Park G et al J. Korean Phys. Soc. 76 1029 (2020)
  20. Scully M O, Zubairy M S Quantum Optics (Cambridge: Cambridge Univ. Press, 1997); Пер. на русск. яз., Скалли М О, Зубайри М С Квантовая оптика (М.: Физматлит, 2003)
  21. Gisin N, Thew R Nat. Photon. 1 165 (2007)
  22. Kumar P et al Phys. Rev. Appl. 6 041001 (2016)
  23. Hutchings M D et al Phys. Rev. Appl. 8 044003 (2017)
  24. Yan F et al Nat. Commun. 7 12964 (2016)
  25. Wang C et al Nat. Commun. 5 5836 (2014)
  26. Gustavsson S et al Science 354 1573 (2016)
  27. Riwar R et al Phys. Rev. B 94 104516 (2016)
  28. Hosseinkhani A et al Phys. Rev. Appl. B 8 064028 (2017)
  29. Vepsäläinen A P et al Nature 584 551 (2020)
  30. Tanabashi M et al Phys. Rev. D 98 030001 (2018)
  31. Martinis J M npj Quantum Inf. 7 90 (2021)
  32. Cardani L et al Nat. Commun. 12 2733 (2021)
  33. Wilen C D et al Nature 594 369 (2021); Wilen C D et al arXiv:2012.06029
  34. Braumüller J et al Appl. Phys. Lett. 108 032601 (2016)
  35. Chow J M et al Proc. SPIE 9500 95001G (2015), Quantum Information and Computatrion XIII
  36. Gambetta J M et al Quantum Inf. 3 2 (2017)
  37. Abhinav K et al Nature 567 491 (2019)
  38. Barends R et al Phys. Rev. Lett. 111 080502 (2013)
  39. Versluis R et al Phys. Rev. Appl. 8 034021 (2017)
  40. Anton S M et al Phys. Rev. Lett. 110 147002 (2013)
  41. Bialczak R et al Phys. Rev. Lett. 99 187006 (2007)
  42. Braumüller J et al Phys. Rev. Appl. 13 054079 (2020)
  43. Zhang X et al Quantum Inf. Process. 16 309 (2017)
  44. Shen Y et al Phys. Rev. A 95 020501 (2017)
  45. Gong M et al Phys. Rev. Lett. 122 110501 (2019)
  46. Rabi I Phys. Rev. 29 174 (1927)
  47. Nielsen M A, Chuang I L Quantum Computation and Quantum Information (Cambridge: Cambridge Univ. Press, 2000); Пер. на русск. яз., Нильсен М, Чанг И Квантовые вычисления и квантовая информация (М.: Мир, 2006)
  48. McKay D C et al Phys. Rev. A 96 022330 (2017)
  49. Jerger M et al Phys. Rev. Lett. 123 150501 (2019)
  50. Chow J M et al Phys. Rev. A 82 040305 (2010)
  51. Motzoi F et al Phys. Rev. Lett. 103 110501 (2009)
  52. Martinis J M, Geller M R Phys. Rev. A 90 022307 (2014)
  53. Motzoi F, Wilhelm W K Phys. Rev. A 88 062318 (2013)
  54. McKay D et al Phys. Rev. A 96 101103 (2016)
  55. Gambetta J M et al Phys. Rev. A 83 012308 (2011)
  56. Abrams D M et al Phys. Rev. Appl. 12 064022 (2019)
  57. Arrigo A D, Paladino E New J. Phys. 14 053035 (2012)
  58. Willsch D et al Phys. Rev. A 96 062302 (2017)
  59. Werninghaus M et al npj Quantum Inf. 7 14 (2021)
  60. Dewes A et al Phys. Rev. Lett. 108 057002 (2012)
  61. DiCarlo L et al Nature 460 240 (2009)
  62. Leek P J et al Phys. Rev. B 79 180511 (2009)
  63. Corcoles A D et al Phys. Rev. A 87 030301 (2013)
  64. Chow J M et al Phys. Rev. Lett. 107 080502 (2011)
  65. Poletto S et al Phys. Rev. Lett. 109 240505 (2012)
  66. Paik H et al Phys. Rev. Lett. 117 250502 (2016)
  67. Chow J M et al New J. Phys. 15 115012 (2013)
  68. Majer J et al Nature 449 443 (2007)
  69. Strauch F W et al Phys. Rev. Lett. 91 167005 (2003)
  70. Barends R et al Nature 508 500 (2014)
  71. Garcтa-Ripoll J et al Phys. Rev. Appl. 14 044035 (2020)
  72. Barron G S et al Phys. Rev. B 101 054508 (2020)
  73. Hong Z P et al Phys. Rev. A 97 022332 (2018)
  74. Egger D J et al Phys. Rev. Appl. 11 014017 (2019)
  75. Yan T et al Phys. Rev. Lett. 122 080501 (2019)
  76. Klots A, Ioffe L Phys. Rev. B 104 144502 (2021)
  77. Barends R et al Phys. Rev. Lett. 123 210501 (2019)
  78. Abrams D M et al Nat. Electron. 3 744 (2020)
  79. Rol M A et al Phys. Rev. Lett. 123 120502 (2019)
  80. Chu J et al Phys. Rev. Appl. 13 064012 (2020)
  81. Zheng S B, Guo G C Phys. Rev. Lett. 85 2392 (2000)
  82. Chen Y et al Phys. Rev. Lett. 113 220502 (2014)
  83. Neill C J "A path towards quantum supremacy with superconducting qubits" Ph.D. Thesis (Santa Barbara, CA: Univ. of California, 2017)
  84. Yan F et al Phys. Rev. Appl. 10 054062 (2018)
  85. Zulehner A, Wille R Proc. of the 24th Asia and South Pacific Design Automation Conf., ASP-DAC 2019, Jan. 21 - 24, 2019, Tokyo, Japan (2019) p. 185
  86. Wang Y et al Quantum Inf. 4 46 (2018)
  87. Ozaeta A, McMahon P Quantum Sci. Technol. 4 2 (2019)
  88. Zulenher A et al IEEE Trans. Comput. Aid. D 38 1226 (2018)
  89. Narendra N et al arXiv:1712.07326
  90. Ferrari D, Amoretti A Int. J. Quantum Inf. 16 1840006 (2018)
  91. Singh R K arXiv:1807.02883
  92. Li G et al ASPLOS '19: Proc. of the Twenty-Fourth Intern. Conf. on Architectural Support for Programming Languages and Operating Systems, April 2019 (2019) p. 1001
  93. Nishio S et al ACM J. Emerging Technol. Comput. Syst. 16 (3) 32 (2020)
  94. McCaskey A J et al npj Quantum Inf. 5 99 (2019)
  95. Reagor M et al Sci. Adv. 4 aao3603 (2018)
  96. Li A C Y et al APS March Meeting K42.005 (2019)
  97. Johnson B et al APS March Meeting K33.001 (2018)
  98. Hartung T, Jansen K J. Math. Phys. 60 093504 (2019)
  99. Lamm H, Lawrence S Phys. Rev. Lett. 121 170501 (2018)
  100. Olivares-Sánchez J et al Quantum Rep. 2 293 (2020)
  101. Otterbach J S et al arXiv:1712.05771
  102. Zhao Z et al Quantum Mach. Intell. 1 41 (2019)
  103. Dumitrescu E F et al Phys. Rev. Lett. 120 210501 (2018)
  104. Fingerhuth M, Babej T, Ing C arXiv:1810.13411
  105. Wootton J R arXiv:1806.02736
  106. Google AI Quantum and Collab., Arute F et al Science 369 1084 (2020)
  107. Harrigan M P et al Nat. Phys. 17 332 (2021)
  108. Benjamin S, Bose S Phys. Rev. Lett. 90 247901 (2003)
  109. Martin A et al Phys. Rev. Res. 2 013012 (2020)
  110. Xu K et al Phys. Rev. Lett. 120 050507 (2018)
  111. Smith J et al Nat. Phys. 12 907 (2016)
  112. Jurcevic P et al Nature 511 202 (2014)
  113. Babukhin D V et al Phys. Rev. A 101 052337 (2020)
  114. McDermott R et al Quantum Sci. Technol. 3 024004 (2018)
  115. Likharev K K, Semenov V K IEEE Trans. Appl. Supercond. 1 3 (1991)
  116. Zhou X et al IEEE Trans. Appl. Supercond. 11 1018 (2001)
  117. Crankshaw D S et al IEEE Trans. Appl. Supercond. 13 966 (2003)
  118. Semenov V K et al IEEE Trans. Appl. Supercond. 13 960 (2003)
  119. Лихарев К К Радиотехника и электроника 19 1494 (1974); Likharev K K Radio Eng. Electron. Phys. 19 109 (1974)
  120. Shapiro S, Janus A R, Holly S Rev. Mod. Phys. 36 223 (1964)
  121. Kaplunenko V K et al IEEE Trans. Magn. 25 861 (1989)
  122. Bastrakova M V et al Supercond. Sci. Technol. 35 055003 (2022)
  123. Rylyakov A http://www.physics.sunysb.edu/Physics/RSFQ/Lib/AR/dcsfq.html
  124. Whiteley S R IEEE Trans. Magn. 27 2902 (1991)
  125. McDermott R, Vavilov M G Phys. Rev. Appl. 2 014007 (2014)
  126. Liebermann J, Wilhelm F K Phys. Rev. Appl. 2 024022 (2016)
  127. Li K et al Phys. Rev. Appl. 12 014044 (2019)
  128. Leonard E et al Phys. Rev. Appl. 11 014009 (2019)
  129. Bodenhausen G, Freeman R, Morris G A J. Magn. Reson. 23 171 (1976)
  130. Morris G A, Freeman R J. Magn. Reson. 29 433 (1978)
  131. Patel U et al Phys. Rev. B 96 220501 (2017)
  132. Arkhipov R M et al Opt. Lett. 44 1202 (2019)
  133. Arkhipov R et al Opt. Express 28 17020 (2020)
  134. Popolitova D V et al Beilstein J. Nanotechnol. 10 1548 (2019)
  135. Soloviev I I et al Phys. Rev. B 92 014516 (2015)
  136. Soloviev I I et al Appl. Phys. Lett. 105 202602 (2014)
  137. Soloviev I I et al Phys. Rev. E 87 060901 (2013)
  138. Klenov N V et al Phys. Solid State 52 11 (2010)
  139. Denisenko M V, Klenov N V, Satanin A M J. Phys. Conf. Ser. 012004 (2018)
  140. Denisenko M V et al AIP Conf. Proc. 1936 020009 (2018)
  141. Бастракова М В, Кленов Н В, Сатанин А М ФТТ 61 1565 (2019); Bastrakova M V, Klenov N V, Satanin A M Phys. Solid State 61 1515 (2019)
  142. Klenov N V et al Beilstein J. Nanotechnol. 6 1946 (2015)
  143. Tao W et al Chin. Phys. Lett. 23 971 (2006)
  144. Бастракова М В, Клёнов Н В, Сатанин А М ЖЭТФ 158 579 (2020); Bastrakova M V, Klenov N V, Satanin A M J. Exp. Theor. Phys. 131 507 (2020)
  145. Лихарев К К УФН 139 169 (1983); Likharev K K Sov. Phys. Usp. 26 87 (1983)
  146. Cade С et al Phys. Rev. B 102 235122 (2020)
  147. Fedorov G P et al Phys. Rev. Lett. 126 180503 (2021)
  148. Gong M et al Science 372 948 (2021)
  149. Wang C et al arXiv:2105.09890
  150. Nguyen L B et al arXiv:2201.09374

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение