41.75.Jv Laser-driven acceleration
-
S.V. Popruzhenko, A.M. Fedotov “Dynamics and radiation of charged particles in ultra-intense laser fields” Phys. Usp. 66 460–493 (2023)
41.75.Jv, 52.38.−r, 52.40.Mj (all)
-
G.N. Makarov “Control of the parameters and composition of molecular and cluster beams by means of IR lasers” Phys. Usp. 61 617–644 (2018)
06.30.−k, 07.77.Gx, 33.80.−b, 36.40.−c, 41.75.Jv, 42.62.Fi, 82.50.Hp (all)
-
I.Yu. Kostyukov, A.M. Pukhov “Plasma-based methods for electron acceleration: current status and prospects” Phys. Usp. 58 81–88 (2015)
41.75.Jv, 52.35.−g, 52.38.Kd (all)
-
S.V. Bulanov, Ja.J. Wilkens et al “Laser ion acceleration for hadron therapy” Phys. Usp. 57 1149–1179 (2014)
41.75.Jv, 52.38.Kd, 87.50.−a, 87.53.Jw, 87.55.−x, 87.56.−v (all)
-
V.P. Milant’ev “Cyclotron autoresonance — 50 years since discovery” Phys. Usp. 56 823–832 (2013)
01.65.+g, 41.75.Jv, 76.40.+b (all)
-
V.D. Shiltsev “High energy particle colliders: past 20 years, next 20 years and beyond” Phys. Usp. 55 965–976 (2012)
29.20.−c, 29.20.Ej, 29.27.−a, 41.75.Jv, 52.27.Lw, 52.38.Kd (all)
-
A.V. Korzhimanov, A.A. Gonoskov et al “Horizons of petawatt laser technology” Phys. Usp. 54 9–28 (2011)
41.75.Jv, 42.55.−f, 42.62.Be, 42.65.Yj, 52.38.Kd, 52.38.Ph (all)
-
V.S. Belyaev, V.P. Krainov et al “Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets” Phys. Usp. 51 793–814 (2008)
41.75.Jv, 52.38.−r, 79.20.Ds (all)
-
E.N. Ragozin, I.I. Sobel’man “Free-electron laser: advancement into the X-ray region” Phys. Usp. 47 195–196 (2004)
41.60.Cr, 41.75.Jv, 42.55.−f (all)
|