Accepted articles

Reviews of topical problems


Memristors for neuromorphic computing systems: basic parameters and methods of their optimization

 a,  a, b,  a,  a, b, c,  b,  a, b,  a,  a, b, c,  a, b, c
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation

In recent years, the scientific community has maintained substantial interest in neuromorphic computing systems based on memristive devices owing to their unique advantages. Although there is a wide variety of memristors, a device with optimal parameters for neuromorphic computing has not been developed yet. This article presents comprehensive overview of the principal types and parameters of memristive devices. Memristors operating through valence change, electrochemical metallization, phase change, ferroelectric tunneling, and spin-tunneling effects are considered. The key characteristics, benefits and limitations of each memristor type are analyzed. The main approaches to enhancing parameters of memristors are presented, including optimization of composition and structure of memristive devices, circuit architecture and algorithmic solutions.

Keywords: memristors, mechanisms of operation, type of memristors, characteristic optimization
DOI: 10.3367/UFNe.2025.09.040037
Citation: Ilin A S, Matsukatova A N, Martyshov M N, Emelyanov A V, Rylkov V V, Demin V A, Forsh P A, Kashkarov P K, Kovalchuk M V "Memristors for neuromorphic computing systems: basic parameters and methods of their optimization" Phys. Usp., accepted

Received: 14th, July 2025, revised: 19th, September 2025, 21st, September 2025

Оригинал: Ильин А С, Мацукатова А Н, Мартышов М Н, Емельянов А В, Рыльков В В, Демин В А, Форш П А, Кашкаров П К, Ковальчук М В «Мемристоры для нейроморфных вычислительных систем: основные параметры и способы их оптимизации» УФН, принята к публикации; DOI: 10.3367/UFNr.2025.09.040037

Similar articles (6) ↓

  1. L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov “Optical properties of porous-system-based nanocompositesPhys. Usp. 50 595–612 (2007)
  2. V.S. Vavilov “Atomic migration and related changes in defect concentration and structure due to electronic subsystem excitations in semiconductorsPhys. Usp. 40 387–392 (1997)
  3. V.B. Molodkin, A.P. Shpak et alMultiparametric crystallography using the diversity of multiple scattering patterns for Bragg and diffuse waves. Method of standing diffuse wavesPhys. Usp. 54 661–689 (2011)
  4. M.A. Krivoglaz “Fluctuon states of electronsSov. Phys. Usp. 16 856–877 (1974)
  5. L.N. Bulaevskii “Structural transitions with formation of charge-density waves in layer compoundsSov. Phys. Usp. 19 836–843 (1976)
  6. A.I. Musorin, A.S. Shorokhov et alPhotonics approaches to the implementation of neuromorphic computingPhys. Usp. 66 1211–1223 (2023)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions