Issues

 / 

2025

 / 

July

  

International year of quantum science and technology. Reviews of topical problems


Structural dynamics of thin-film materials: achievements, problems, prospects

  a,   a, §  a, b, *  a, #  c, d, e, °  f
a Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
b HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation
c State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, China
d Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
e Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
f MIREA - Russian Technological University, prosp. Vernadskogo 78, Moscow, 119454, Russian Federation

The use of short photoelectron pulses has opened up the possibility of studying structural dynamics with high spatiotemporal resolution. Within the framework of this methodology, a pulsed electron beam formed due to the photoelectric effect provides probing of light-induced fast processes in matter at different moments in time. The integration of pico-femtosecond laser technology and electron optics in an experimental setup has proven to be extremely effective for observing the behavior of atomic-molecular structures at their natural scales in the spatiotemporal continuum. In imaging mode, this concept has led to the creation of 4D electron microscopy, and, in the electron diffraction mode, a unique opportunity has appeared to shoot atomic-molecular movies. The high sensitivity of the method in combination with relatively low radiation damage to the sample (in contrast to an X-ray free electron laser) has made it possible to study promising thin-film materials on compact setups in standard laboratories. The review examines the development of this scientific field from the study of nanosecond structural dynamics to femtosecond quantum tomography based on ultrafast electron diffraction.

Fulltext pdf (879 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.12.039828
Keywords: ultrafast electron microscopy and diffraction, dynamic processes, structural dynamics, atomic-molecular cinema, femtosecond time resolution, atomic spatial resolution, electron tomography
PACS: 07.78.+s, 61.05.J−, 64.70.D−, 64.70.K−, 68.37.Og (all)
DOI: 10.3367/UFNe.2024.12.039828
URL: https://ufn.ru/en/articles/2025/7/a/
2-s2.0-105013757249
2025PhyU...68..641A
Citation: Aseyev S A, Mironov B N, Poydashev D G, Ryabov E A, Li Z, Ischenko A A "Structural dynamics of thin-film materials: achievements, problems, prospects" Phys. Usp. 68 641–652 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, October 2024, revised: 6th, December 2024, 24th, December 2024

Оригинал: Асеев С А, Миронов Б Н, Пойдашев Д Г, Рябов Е А, Ли Дж, Ищенко А А «Структурная динамика тонкоплёночных материалов: достижения, проблемы, перспективы» УФН 195 681–694 (2025); DOI: 10.3367/UFNr.2024.12.039828

References (122) ↓ Similar articles (20)

  1. De Broglie L "Recherches sur la théorie des quanta" Doctoral Dissertation (Paris: Masson, 1924); De Broglie L Ann. Physique 10 (3) 22 (1925)
  2. Davisson C, Germer L H Phys. Rev. 30 705 (1927)
  3. Williams D B, Carter C B Transmission Electron Microscopy. A Textbook For Materials Science (New York: Springer, 2008)
  4. Keller U Nature 424 831 (2003)
  5. Miller R J D Annu. Rev. Phys. Chem. 65 583 (2014)
  6. Zewail A H, Thomas J M 4D Electron Microscopy. Imaging In Space And Time (London: Imperial College Press, 2010)
  7. Chergui M, Zewail A H Chem. Phys. Chem. 10 28 (2009)
  8. Ischenko A A, Aseyev S A Time Resolved Electron Diffraction: For Chemistry, Biology And Materials Science (San Diego: Elsevier, 2014)
  9. Ischenko A A, Weber P M, Miller R J D Chem. Rev. 117 11066 (2017)
  10. Ischenko A A et al Appl. Phys. B 32 161 (1983)
  11. Siwick B J et al Science 302 1382 (2003)
  12. Siwick B J et al J. Appl. Phys. 92 1643 (2002)
  13. Muller D A Nature Mater. 8 263 (2009)
  14. Uhlemann St et al Phys. Rev. Lett. 111 046101 (2013)
  15. Müller E W Z. Phys. 131 136 (1951)
  16. Binnig G, Quate C F, Gerber Ch Phys. Rev. Lett. 56 930 (1986)
  17. Campbell G H, McKeown J T, Santala M K Springer Handbook Of Microscopy (Eds P W Hawkes, J C H Spence) (Cham: Springer, 2019) p. 455
  18. Aseyev S A et al Crystals 10 (6) 452 (2020)
  19. Filippetto D et al Rev. Mod. Phys. 94 045004 (2022)
  20. Amini K, Rouzée A, Vrakking M J J (Eds) Structural Dynamics With X-ray And Electron Scattering (London: Royal Society of Chemistry, 2023)
  21. Balykin V I, Subbotin M V, Letokhov V S Opt. Commun. 129 177 (1996)
  22. Mironov B N et al J. Exp. Theor. Phys. 106 1007 (2008); Mironov B N et al Zh. Eksp. Teor. Fiz. 133 1155 (2008)
  23. van der Geer S B et al Microsc. Microanal. 15 (4) 282 (2009)
  24. de Raadt T C H, Franssen J G H, Luiten O J Phys. Rev. Lett. 130 205001 (2023)
  25. van Oudheusden T et al J. Appl. Phys. 102 093501 (2007)
  26. van Oudheusden T et al Phys. Rev. Lett. 105 264801 (2010)
  27. King W E et al J. Appl. Phys. 97 111101 (2005)
  28. Xu C et al Nat. Commun. 14 1265 (2023)
  29. Kieft E et al Struct. Dyn. 2 051101 (2015)
  30. Andreev S V et al Quantum Electron. 47 116 (2017); Andreev S V et al Kvantovaya Elektron. 47 116 (2017)
  31. Aseyev S A et al Chem. Phys. Lett. 797 139599 (2022)
  32. Du D X, Simjanoska M, Fitzpatrick A W P J. Struct. Biol. 215 107941 (2023)
  33. Shimojima T, Nakamura A, Ishizaka K Microscopy 72 (4) 287 (2023)
  34. Shimojima T, Nakamura A, Ishizaka K Rev. Sci. Instrum. 94 023705 (2023)
  35. Makarov D N, Matveev V I JETP Lett. 101 603 (2015); Makarov D N, Matveev V I Pis’ma Zh. Eksp. Teor. Fiz. 101 677 (2008)
  36. Waldecker L et al Phys. Rev. X 6 021003 (2016)
  37. Anisimov S I et al Sov. Phys. Tech. Phys. 11 945 (1967); Anisimov S I et al Zh. Eksp. Teor. Fiz. 36 1273 (1966)
  38. Anisimov S I, Kapeliovich B L, Perel’man T L Sov. Phys. JETP 39 375 (1974); Anisimov S I, Kapeliovich B L, Perel’man T L Zh. Eksp. Teor. Fiz. 66 776 (1974)
  39. Sciaini G et al Nature 458 56 (2009)
  40. Spivak G V, Saparin G V, Bykov M V Sov. Phys. Usp. 12 756 (1970); Spivak G V, Saparin G V, Bykov M V Usp. Fiz. Nauk 99 635 (1969)
  41. Bostanjoglo O, Rosin Th Opt. Acta Int. J. Opt. 24 657 (1977)
  42. Jing Ch et al Ultramicroscopy 207 112829 (2019)
  43. Barwick B, Flannigan D J, Zewail A H Nature 462 902 (2009)
  44. Talebi N Near-Field-Mediated Photon--Electron Interactions (Springer Ser. in Optical Sciences) Vol. 228 (Cham: Springer, 2019)
  45. Kim Y-J et al Sci. Adv. 9 eadd5375 (2023)
  46. Pomarico E et al ACS Photon. 5 759 (2018)
  47. Feist A et al Ultramicroscopy 176 63 (2017)
  48. Houdellier F et al Ultramicroscopy 186 128 (2018)
  49. Madan I et al Sci. Adv. 5 eaav8358 (2019)
  50. Bie Y-Q et al Ultramicroscopy 230 113389 (2021)
  51. Zong A et al Nature 620 988 (2023)
  52. Su Y et al Nano Lett. 23 10772 (2023)
  53. González Vallejo I et al Phys. Rev. B 97 054302 (2018)
  54. Durham D B et al Struct. Dyn. 9 064302 (2022)
  55. Liu Y et al Nat. Commun. 14 2795 (2023)
  56. Champenois E G et al Phys. Rev. Lett. 131 143001 (2023)
  57. Nabben D et al Nature 619 63 (2023)
  58. Mattes M, Volkov M, Baum P Nat. Commun. 15 1743 (2024)
  59. Yang Y et al Science 383 168 (2024)
  60. Orville A M Curr. Opin. Struct. Biol. 65 193 (2020)
  61. Caffrey M, Cherezov V Nat. Protoc. 4 706 (2009)
  62. Cherezov V et al Science 318 1258 (2007)
  63. Nogly P et al Science 361 eaat0094 (2018)
  64. Nass Kovacs G et al Nat. Commun. 10 3177 (2019)
  65. Miller R J D et al Nat. Commun. 11 1240 (2020)
  66. Francis W J C et al Struct. Dyn. 11 024301 (2024)
  67. Nikbin E et al Microsc. Microanal. 30 (Supplement_1) ozae044.936 (2024)
  68. Lvovsky A I, Raymer M G Rev. Mod. Phys. 81 299 (2009)
  69. Priebe K E et al Nature Photon. 11 793 (2017)
  70. Smithey D T et al Phys. Rev. Lett. 70 1244 (1993)
  71. Cai X et al Science 338 363 (2012)
  72. Miquel C et al Nature 418 59 (2002)
  73. Murch K W et al Nature 502 211 (2013)
  74. Saglamyurek E et al Nature Photon. 9 83 (2015)
  75. Pauli W Quantentheorie (Handbuch der Physik, Eds H Bethe et al) (Berlin: Springer, 1933) p. 83
  76. Weigert S Phys. Rev. A 53 2078 (1996)
  77. Kim Y S, Noz M E Phase Space Picture Of Quantum Mechanics. Group Theoretical Approach (World Scientific Lecture Notes in Physics) Vol. 40 (Singapore: World Scientific, 1991)
  78. Li Z et al ACS Photon. 7 296 (2020)
  79. Janicke U, Wilkens M J. Mod. Opt. 42 2183 (1995)
  80. Ischenko A A, Schaefer L, Ewbank J D Proc. SPIE 3516 580 (1999); Ischenko A A, Schaefer L, Ewbank J D 23rd Intern. Congress on High-Speed Photography and Photonics, 1998, Moscow, Russian Federation
  81. Leonhardt U, Raymer M G 23rd Intern. Congress On High-Speed Photography And Photonics, 1998, Moscow, Russian Federation 76 1985 (1996)
  82. Leonhardt U et al Opt. Commun. 127 144 (1996)
  83. Mouritzen A S, Mølmer K Phys. Rev. A 73 042105 (2006)
  84. Mouritzen A S, Mølmer K J. Chem. Phys. 124 244311 (2006)
  85. Opatrný T, Welsch D-G, Vogel W Phys. Rev. A 56 1788 (1997)
  86. Branderhorst M P A et al J. Phys. B 41 074004 (2008)
  87. Margulis B et al Science 380 77 (2023)
  88. Laurell H et al Phys. Rev. Research 4 033220 (2022)
  89. Dunn T J, Walmsley I A, Mukamel S Phys. Rev. Lett. 74 884 (1995)
  90. Skovsen E et al Phys. Rev. Lett. 91 090406 (2003)
  91. Kurtsiefer Ch, Pfau T, Mlynek J Nature 386 150 (1997)
  92. Stankus B et al Nat. Chem. 11 716 (2019)
  93. Starodub D et al Nat. Commun. 3 1276 (2012)
  94. Yang J et al Science 361 64 (2018)
  95. Wolf T J A et al Nat. Chem. 11 504 (2019)
  96. Eichberger M et al Nature 468 799 (2010)
  97. Mehrabi P et al Science 365 1167 (2019)
  98. Chapman H N et al Nature 470 73 (2011)
  99. Seibert M M et al Nature 470 78 (2011)
  100. Chen C-C et al Phys. Rev. B 76 064113 (2007)
  101. Fienup J R Appl. Opt. 21 2758 (1982)
  102. Marchesini S Rev. Sci. Instrum. 78 011301 (2007)
  103. Zhang M et al Nat. Commun. 12 5441 (2021)
  104. Ewbank J D, Schäfer L, Ischenko A A J. Mol. Struct. 524 1 (2000)
  105. Ischenko A A, Weber P M, Miller R J D Russ. Chem. Rev. 86 1173 (2017); Ischenko A A, Weber P M, Miller R J D Usp. Khim. 86 1173 (2017)
  106. Ischenko A A Phys. Res. Int. 2013 236743 (2013)
  107. Jiang J et al J. Chem. Phys. 160 104101 (2024)
  108. Kowalewski M, Bennett K, Mukamel S Struct. Dyn. 4 054101 (2017)
  109. Zhang M et al J. Phys. Chem. Lett. 13 1668 (2022)
  110. Yang J et al Science 368 885 (2020)
  111. Santra R J. Phys. B 42 169801 (2009)
  112. Keefer D et al Proc. Natl. Acad. Sci. USA 118 e2022037118 (2021)
  113. Yong H et al Phys. Rev. Lett. 129 103001 (2022)
  114. Mu X et al Ultrafast Sci. 3 0015 (2023)
  115. Iijima T, Bonham R A, Ando T J. Phys. Chem. 67 1472 (1963)
  116. Bartell L S, Gavin R M J. Am. Chem. Soc. 86 3493 (1964)
  117. Morrigan L et al Phys. Rev. Lett. 131 193001 (2023)
  118. Itatani J et al Nature 432 867 (2004)
  119. Yuen-Zhou J, Aspuru-Guzik A J. Chem. Phys. 134 134505 (2011)
  120. Yuen-Zhou J et al Proc. Natl. Acad. Sci. USA 108 17615 (2011)
  121. Aseyev S A, Weber P M, Ischenko A A J. Anal. Sci. Meth. Instrum. 3 30 (2013)
  122. Ischenko A A et al Fine Chem. Technol. 12 (1) 5 (2017)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions