Issues

 / 

2025

 / 

June

  

Methodological notes


Asymptotic theory of classical tracer transport in inhomogeneous and nonstationary media. Hamilton's formalism

 ,  
Nuclear Safety Institute, Russian Academy of Sciences, ul. Bolshaya Tulskaya 52, Moscow, 115191, Russian Federation

We develop an asymptotic theory of tracer transport due to diffusion and advection, when the diffusivity and advection velocity vary slowly over space and time. The tracer concentration is expressed through a single time integral. The integrand is determined by solving first-order ordinary differential equations, which are similar to Hamilton's equations for a material point in classical mechanics.

Fulltext pdf (353 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.09.039764
Keywords: diffusion, advection, asymptotic form, Hamilton's equations
PACS: 05.60.Cd, 05.60.−k, 02.60.Cb (all)
DOI: 10.3367/UFNe.2024.09.039764
URL: https://ufn.ru/en/articles/2025/6/g/
001570951300005
2-s2.0-105011744881
2025PhyU...68..627K
Citation: Kondratenko P S, Matveev L V "Asymptotic theory of classical tracer transport in inhomogeneous and nonstationary media. Hamilton's formalism" Phys. Usp. 68 627–630 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, June 2024, revised: 2nd, September 2024, 13th, September 2024

Оригинал: Кондратенко П С, Матвеев Л В «Асимптотическая теория классического переноса примеси в неоднородных и нестационарных средах. Формализм Гамильтона» УФН 195 669–672 (2025); DOI: 10.3367/UFNr.2024.09.039764

References (8) Similar articles (20) ↓

  1. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motorsPhys. Usp. 62 496–509 (2019)
  2. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservationPhys. Usp. 57 593–596 (2014)
  3. E.V. Shuryak “Stochastic trajectory generation by computerSov. Phys. Usp. 27 448–453 (1984)
  4. A.A. Snarskii “Did Maxwell know about the percolation threshold? (on the fiftieth anniversary оf percolation theory)Phys. Usp. 50 1239–1242 (2007)
  5. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  6. V.D. Lakhno “Translation invariance and the problem of the bipolaronPhys. Usp. 41 403–406 (1998)
  7. A.V. Kukushkin “A technique for solving the wave equation and prospects for physical applications arising therefromPhys. Usp. 36 (2) 81–93 (1993)
  8. G.A. Martynov “Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamicsPhys. Usp. 39 1045–1070 (1996)
  9. V.V. Vasiliev, L.V. Fedorov “Spherically symmetric static problem of General Relativity for a continuumPhys. Usp. 68 187–202 (2025)
  10. S.P. Efimov “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problemPhys. Usp. 65 952–967 (2022)
  11. A.G. Shalashov “Can we refer to Hamilton equations for an oscillator with friction?Phys. Usp. 61 1082–1088 (2018)
  12. V.G. Niz’ev “Dipole-wave theory of electromagnetic diffractionPhys. Usp. 45 553–559 (2002)
  13. S.L. Sobolev “Local non-equilibrium transport modelsPhys. Usp. 40 1043–1053 (1997)
  14. A.A. Andronov, Yu.A. Ryzhov “An infinity of the classical theory of fluctuations in a nondegenerate electron gasSov. Phys. Usp. 21 873–878 (1978)
  15. E.D. Trifonov “On quantum statistics for ensembles with a finite number of particlesPhys. Usp. 54 723–727 (2011)
  16. V.F. Kovalev, D.V. Shirkov “Renormalization-group symmetries for solutions of nonlinear boundary value problemsPhys. Usp. 51 815–830 (2008)
  17. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theoryPhys. Usp. 50 1217–1238 (2007)
  18. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  19. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  20. A.V. Kukushkin “An invariant formulation of the potential integration method for the vortical equation of motion of a material pointPhys. Usp. 45 1153–1164 (2002)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions