Issues

 / 

2025

 / 

June

  

Instruments and methods of investigation


Graphene-based supercapacitors

 ,  
National Research University "Moscow Power Engineering Institute", Krasnokazarmennaya st. 14, Moscow, 111250, Russian Federation

Problems of supercapacitor development have been considered related to the enhancement of operating characteristics of systems such as specific energy storage, specific released energy, charging-discharging time, and the ability to withstand the maximum charge-discharge cycling times without lowering the stored energy. One of the approaches to solving the above-listed problems relates to the use of graphene and related materials as electrodes for supercapacitors. The presented article reviews studies addressing the investigation of graphene-based materials with the aim of their use in supercapacitors. Special attention is devoted to hybrid systems in which graphene-based materials are used in combination with metal oxides. Such systems, called pseudocapacitors, possess higher operation characteristics than conventional supercapacitors do due to the possibility of executing electro-chemical processes at the interface between the electrode and electrolyte.

Fulltext pdf (7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.11.039816
Keywords: supercapacitors, pseudocapacitors, graphene
PACS: 68.65.Pq, 82.47.Uv, 88.80.fh (all)
DOI: 10.3367/UFNe.2024.11.039816
URL: https://ufn.ru/en/articles/2025/6/e/
001570951300004
2-s2.0-105011727050
2025PhyU...68..597E
Citation: Eletskii A V, Dao Kh L "Graphene-based supercapacitors" Phys. Usp. 68 597–616 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, October 2024, 22nd, November 2024

Îðèãèíàë: Åëåöêèé À Â, Äàî Ê Ë «Ñóïåðêîíäåíñàòîðû íà îñíîâå ãðàôåíà» ÓÔÍ 195 635–657 (2025); DOI: 10.3367/UFNr.2024.11.039816

References (129) ↓ Cited by (1) Similar articles (10)

  1. Idumah C I Polymer-Plastics Technol. Mater. 61 1871 (2022)
  2. Allen M J, Tung V C, Kaner R B Chem. Rev. 110 132 (2010)
  3. Volfkovich Yu M Russ. J. Electrochem. 57 311 (2021); Volfkovich Yu M Elektrokhimiya 57 (4) 197 (2021)
  4. Kötz R, Carlen M Electrochim. Acta 45 2483 (2000)
  5. Thota S P et al Engineered Science 18 31 (2022)
  6. Raza W et al Nano Energy 52 441 (2018)
  7. Horn M et al Economic Anal. Policy 61 93 (2019)
  8. Wang G, Zhang L, Zhang J Chem. Soc. Rev. 41 797 (2012)
  9. Zheng J P, Huang J, Jow T R J. Electrochem. Soc. 144 2026 (1997)
  10. Burke A J. Power Sources 91 37 (2000)
  11. Burke A F Proc. IEEE 95 806 (2007)
  12. Sarno M Catalysis, Green Chemistry And Sustainable Energy (Studies in Surface Science and Catalysis) Vol. 179 (Eds A Basile et al) (Amsterdam: Elsevier, 2019) p. 431
  13. Conway B E Electrochemical Supercapacitors: Scientific Fundamentals And Technological Applications (New York: Kluwer Acad./Plenum Publ., 1999)
  14. Herrero E, Buller L J, Abruña H D Chem. Rev. 101 1897 (2001)
  15. Helmholtz H Ann. Physik 243 337 (1879)
  16. Chapman D L Philos. Mag. 25 475 (1913)
  17. Stern O Z. Elektrochem. Angew. Phys. Chem. 30 508 (1924)
  18. Zhang L L, Zhao X S Chem. Soc. Rev. 38 2520 (2009)
  19. Becker H I "Low voltage electrolytic capacitor" U.S. Patent No. 2800616 (1957); https://patents.google.com/patent/US2800616A/en
  20. Rightmire R A "Electrical energy storage apparatus" U.S. Patent No. 3288641 (1962); https://patents.google.com/patent/US3288641A/en
  21. Boos D L "Electrolytic capacitor having carbon paste electrodes" U.S. Patent No. 3536963 (1970); https://patents.google.com/patent/US3536963A/en
  22. Li X, Wei B Nano Energy 2 (2) 159 (2013)
  23. Zil’berman G E Elektrichestvo I Magnetizm (Electricity And Magnetism) (Dolgoprudnyi: Intellekt, 2015)
  24. Miller J R, Dimon P Science 321 651 (2008)
  25. Brett C M A, Brett A M O Electrochemistry: Principles, Methods, And Applications (Oxford: Oxford Univ. Press, 1993)
  26. Pal B et al Nanoscale Adv. 1 3807 (2019)
  27. Choudhury N A, Sampath S, Shukla A K Energy Environ. Sci. 2 55 (2009)
  28. Sequeira C, Santos D (Eds) Polymer Electrolytes: Fundamentals And Applications (Cambridge: Woodhead Publ., 2010)
  29. Zhong C et al Chem. Soc. Rev. 44 7484 (2015)
  30. Armand M et al Nature Mater. 8 621 (2009)
  31. Hall P J et al Energy Environ. Sci. 3 1238 (2010)
  32. Pandolfo A G, Hollenkamp A F J. Power Sources 157 11 (2006)
  33. Sun Y, Wu Q, Shi G Energy Environ. Sci. 4 1113 (2011)
  34. Dubey R, Guruviah V Ionics 25 1419 (2019)
  35. Borenstein A et al J. Mater. Chem. A 5 12653 (2017)
  36. Sing K S W et al Pure Appl. Chem. 57 603 (1985)
  37. Zhu H et al (Eds) Graphene: Fabrication, Characterizations, Properties And Applications (London: Academic Press, 2017)
  38. Dubois S M-M et al Eur. Phys. J. B 72 1 (2009)
  39. Geim A K, Novoselov K S Nature Mater. 6 183 (2007)
  40. Lee T-W Graphene For Flexible Lighting And Displays (Cambridge, MA: Woodhead Publ., 2020)
  41. Stoller M D et al Nano Lett. 8 3498 (2008)
  42. Kelly B T Physics Of Graphite (London: Applied Science, 1981)
  43. Morozov S V et al Phys. Rev. Lett. 100 016602 (2008)
  44. Boscá A et al J. Appl. Phys. 117 044504 (2015)
  45. Si C, Sun Z, Liu F Nanoscale 8 3207 (2016)
  46. Nair R R et al Science 320 1308 (2008)
  47. Berger C et al Science 312 1191 (2006)
  48. Patel R B et al J. Mater. Res. 29 1522 (2014)
  49. Pei S, Cheng H-M Carbon 50 3210 (2012)
  50. Larciprete R et al J. Am. Chem. Soc. 133 17315 (2011)
  51. Dreyer D R et al Chem. Soc. Rev. 39 228 (2010)
  52. Bocharov G S, Eletskii A V J. Struct. Chem. 59 806 (2018); Bocharov G S, Eletskii A V Zh. Strukt. Khim. 59 841 (2018)
  53. McAllister M J et al Chem. Mater. 19 4396 (2007)
  54. Agarwal V, Zetterlund P B Chem. Eng. J. 405 127018 (2021)
  55. Schniepp H C et al J. Phys. Chem. B 110 8535 (2006)
  56. Becerril H A et al ACS Nano 2 463 (2008)
  57. Wang X, Zhi L, Müllen K Nano Lett. 8 323 (2008)
  58. Wu Z-S et al Carbon 47 493 (2009)
  59. Wu Z-S et al ACS Nano 3 411 (2009)
  60. Li X et al J. Am. Chem. Soc. 131 15939 (2009)
  61. Bocharov G S, Eletskii A V, Melnikov V P Nanosyst. Phys. Chem. Math. 9 (1) 98 (2018)
  62. Sharon M, Sharon M (Eds) Graphene: An Introduction To The Fundamentals And Industrial Applications (Hoboken, NJ: Wiley, 2015)
  63. Ke Q, Wang J J. Materiomics 2 37 (2016)
  64. Zhang K et al J. Mater. Chem. 21 7302 (2011)
  65. Mao L et al J. Mater. Chem. 22 80 (2012)
  66. Li Z et al J. Power Sources 196 8160 (2011)
  67. Wang H et al J. Am. Chem. Soc. 132 7472 (2010)
  68. Wang H-W et al Mater. Chem. Phys. 130 672 (2011)
  69. Yoon S-M et al ACS Nano 6 6803 (2012)
  70. Lee J-S et al ACS Nano 7 6047 (2013)
  71. Park S-H et al Chem. Mater. 27 457 (2015)
  72. Ke Q et al Mater. Res. Express 1 025015 (2014)
  73. Ke Q et al RSC Adv. 4 26398 (2014)
  74. Meng Y et al Adv. Mater. 25 2326 (2013)
  75. Kou L et al Nat. Commun. 5 3754 (2014)
  76. Cheng H et al Nanoscale 5 3428 (2013)
  77. Pech D et al Nature Nanotechnol. 5 651 (2010)
  78. Wang X et al Angew. Chem. Int. Ed. 53 1849 (2014)
  79. Aboutalebi S H et al ACS Nano 8 2456 (2014)
  80. Liu L et al Nat. Commun. 6 7260 (2015)
  81. Yu D et al Nature Nanotechnol. 9 555 (2014)
  82. Lei Z, Christov N, Zhao X S Energy Environ. Sci. 4 1866 (2011)
  83. Vickery J L, Patil A J, Mann S Adv. Mater. 21 2180 (2009)
  84. Khan A A et al J. Phys. Chem. B 128 9586 (2024)
  85. Wang G et al Small 8 452 (2012)
  86. Qiu L et al Chem. Eur. J. 16 10653 (2010)
  87. Si Y, Samulski E T Chem. Mater. 20 6792 (2008)
  88. Li M et al Adv. Funct. Mater. 24 7495 (2014)
  89. Wang D-W et al ACS Nano 3 1745 (2009)
  90. Meng Y et al Adv. Mater. 25 6985 (2013)
  91. Yan J et al Carbon 48 487 (2010)
  92. Lehtimäki S et al ACS Appl. Mater. Interfaces 7 22137 (2015)
  93. Chen C-M et al Chem. Commun. 48 7149 (2012)
  94. Cao X et al Small 7 3163 (2011)
  95. Muhammad A et al Polymers 13 1347 (2021)
  96. Xu Y et al ACS Nano 4 4324 (2010)
  97. Yang T et al J. Mater. Chem. A 5 16537 (2017)
  98. Zhou H et al Carbon 59 495 (2013)
  99. Xu Y et al Nano Res. 6 65 (2013)
  100. Luan V H et al J. Mater. Chem. A 1 208 (2013)
  101. Chen P et al Nano Energy 2 249 (2013)
  102. Guo H-L et al J. Mater. Chem. A 1 2248 (2013)
  103. Chang Y et al J. Power Sources 238 492 (2013)
  104. Xu Y et al ACS Nano 7 4042 (2013)
  105. Zhang L, Shi G J. Phys. Chem. C 115 17206 (2011)
  106. Gao H et al ACS Appl. Mater. Interfaces 4 2801 (2012)
  107. Sheng K et al New Carbon Mater. 26 9 (2011)
  108. Yang X et al Science 341 534 (2013)
  109. Tai Z, Yan X, Xue Q J. Electrochem. Soc. 159 A1702 (2012)
  110. Zhang X et al J. Mater. Chem. 21 6494 (2011)
  111. Zhao Y et al Adv. Mater. 25 591 (2013)
  112. Yuan J et al Phys. Chem. Chem. Phys. 15 12940 (2013)
  113. Wang Y et al J. Phys. Chem. C 115 23192 (2011)
  114. Xu Y et al Adv. Mater. 25 5779 (2013)
  115. Chen J et al Adv. Mater. 24 4569 (2012)
  116. Liu F et al Adv. Mater. 24 1089 (2012)
  117. Wu X-L, Xu A-W J. Mater. Chem. A 2 4852 (2014)
  118. Wu Z-S et al J. Am. Chem. Soc. 134 19532 (2012)
  119. Wu X et al J. Mater. Chem. 22 23186 (2012)
  120. Zhang X et al J. Mater. Chem. 21 6494 (2011)
  121. Si W et al Nanoscale Res. Lett. 8 247 (2013)
  122. Wu Z-S et al Adv. Mater. 24 5130 (2012)
  123. Ji C-C et al J. Colloid Interface Sci. 407 416 (2013)
  124. Meng F et al J. Mater. Chem. 21 18537 (2011)
  125. Bokhari S W et al Energy Rep. 6 2768 (2020)
  126. Kumar N et al Nanomaterials 12 3708 (2022)
  127. Liu C et al Nano Lett. 10 4863 (2010)
  128. Novoselov K S et al Science 306 666 (2004)
  129. Eletskii A V et al Phys. Usp. 58 209 (2015); Eletskii A V et al Usp. Fiz. Nauk 185 225 (2015)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions