Issues

 / 

2025

 / 

May

  

Methodological notes


Superradiant quantum phase transition in a semiconductor at room temperature: myth or reality?

 
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The paper examines the conditions for and mechanism of the onset of a nonequilibrium superradiant phase transition in a bulk semiconductor at room temperature in the strong coupling regime. Experimental data are analyzed, and the characteristic properties of this phase transition are compared with previously studied quantum phase transitions in ultracold gases in traps, ensembles of quantum dots, superconducting qubits, and some others. All the basic properties of the previously discovered collective state formed in the process of induced condensation of electron-hole pairs at room temperature are shown to correspond to those of the superradiant phase transition observed in other media.

Fulltext pdf (929 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.10.039772
Keywords: phase transitions, superradiance, strong coupling, femtosecond pulses
PACS: 42.50.Nn, 64.70.Tg, 73.43.Nq (all)
DOI: 10.3367/UFNe.2024.10.039772
URL: https://ufn.ru/en/articles/2025/5/e/
001524725300007
2-s2.0-105008906675
2025PhyU...68..525V
Citation: Vasil’ev P P "Superradiant quantum phase transition in a semiconductor at room temperature: myth or reality?" Phys. Usp. 68 525–531 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, May 2024, revised: 3rd, October 2024, 9th, October 2024

Оригинал: Васильев П П «Сверхизлучающий квантовый фазовый переход в полупроводнике при комнатной температуре: миф или реальность?» УФН 195 557–564 (2025); DOI: 10.3367/UFNr.2024.10.039772

References (59) ↓ Cited by (1) Similar articles (1)

  1. Sachdev S Quantum Phase Transitions (Cambridge: Cambridge Univ. Press, 2011)
  2. Dicke R H Phys. Rev. 93 99 (1954)
  3. Hwang M-J, Puebla R, Plenio M B Phys. Rev. Lett. 115 180404 (2015)
  4. Mivehvar F et al Adv. Phys. 70 1 (2021)
  5. Liu C, Huang J-F Sci. China Phys. Mech. Astron. 67 210311 (2024)
  6. Hepp K, Lieb E H Ann. Physics 76 360 (1973)
  7. Wang Y K, Hioe F T Phys. Rev. A 7 831 (1973)
  8. Agarwal G S Quantum Optics (Cambridge: Cambridge Univ. Press, 2012)
  9. Kaluzny Y et al Phys. Rev. Lett. 51 1175 (1983)
  10. Kirton P et al Adv. Quantum Technol. 2 1800043 (2019)
  11. Kockum A F et al Nat. Rev. Phys. 1 19 (2019)
  12. Baumann K et al Nature 464 1301 (2010)
  13. Cai M-L et al Nat. Commun. 12 1126 (2021)
  14. Zheng R-H et al Phys. Rev. Lett. 131 113601 (2023)
  15. Bamba M et al Commun. Phys. 5 3 (2022)
  16. Zhang X et al Science 373 1359 (2021)
  17. Dimer F et al Phys. Rev. A 75 013804 (2007)
  18. Huang J-F, Tian L Phys. Rev. A 107 063713 (2023)
  19. Ritsch H et al Rev. Mod. Phys. 85 553 (2013)
  20. Domokos P, Ritsch H Phys. Rev. Lett. 89 253003 (2002)
  21. Lambert N, Emary C, Brandes T Phys. Rev. Lett. 92 073602 (2004)
  22. Liu J et al Phys. Rev. A 109 023721 (2024)
  23. Baumann K et al Phys. Rev. Lett. 107 140402 (2011)
  24. Masson S J, Asenjo-Garcia A Nat. Commun. 13 2285 (2022)
  25. Vasil’ev P P Phys. Usp. 44 645 (2001); Vasil’ev P P Usp. Fiz. Nauk 171 679 (2001)
  26. Vasil’ev P P Rep. Prog. Phys. 72 076501 (2009)
  27. Vasil’ev P P, Penty R V, White I H Light Sci. Appl. 5 e16086 (2016)
  28. Kocharovsky V V et al Phys. Usp. 60 345 (2017); Kocharovsky V V et al Usp. Fiz. Nauk 187 367 (2017)
  29. Vasil’ev P P JETP Lett. 115 384 (2022); Vasil’ev P P Pis’ma Zh. Eksp. Teor. Fiz. 115 424 (2022)
  30. Vasil’ev P P et al J. Exp. Theor. Phys. 93 1288 (2001); Vasil’ev P P et al Zh. Eksp. Teor. Fiz. 120 1486 (2001)
  31. Vasil’ev P P JETP Lett. 115 29 (2022); Vasil’ev P P Pis’ma Zh. Eksp. Teor. Fiz. 115 35 (2022)
  32. Devi A et al Phys. Rev. A 102 013701 (2020)
  33. Vasil’ev P P Phys. Status Solidi B 241 1251 (2004)
  34. Vasil’ev P P et al J. Exp. Theor. Phys. 96 310 (2003); Vasil’ev P P et al Zh. Eksp. Teor. Fiz. 123 351 (2003)
  35. Vasil’ev P P, Smetanin I V Phys. Rev. B 74 125206 (2006)
  36. Vasil’ev P P et al Appl. Phys. Lett. 103 241108 (2013)
  37. Castaños O et al Phys. Rev. A 83 051601 (2011)
  38. Altland A, Haake F New J. Phys. 14 073011 (2012)
  39. Butov L V et al Phys. Rev. Lett. 73 304 (1994)
  40. Ritter S et al Phys. Rev. Lett. 98 090402 (2007)
  41. Bloch I, Hänsch T W, Esslinger T Nature 403 166 (2000)
  42. Deng H et al Phys. Rev. Lett. 99 126403 (2007)
  43. Vasil’ev P P et al Europhys. Lett. 104 40003 (2013)
  44. Nagy D et al Phys. Rev. Lett. 104 130401 (2010)
  45. Vasil’ev P P J. Russ. Laser Res. 41 181 (2020)
  46. Vasil’ev P Ultrafast Diode Lasers: Fundamentals And Applications (Norwood, MA: Artech House, 1995)
  47. Jäger S B et al Phys. Rev. Lett. 123 053601 (2019)
  48. Hotter C, Ostermann L, Ritsch H Phys. Rev. Research 5 013056 (2023)
  49. Zhu C J et al Phys. Rev. Lett. 124 073602 (2020)
  50. Chen X-Y et al Phys. Rev. A 101 033827 (2020)
  51. Vasil’ev P P, Penty R V New J. Phys. 22 083046 (2020)
  52. Vasil’ev P P J. Russ. Laser Res. 42 730 (2021)
  53. Ferioli G et al Nat. Phys. 19 1345 (2023)
  54. Braun D, Braun P A, Haake F Opt. Commun. 179 411 (2000)
  55. Chen X et al Nat. Commun. 12 6281 (2021)
  56. Keldysh L V, Kopaev Yu V Sov. Phys. Solid State 6 2219 (1965); Keldysh L V, Kopaev Yu V Fiz. Tverd. Tela 6 2791 (1964)
  57. Keldysh L V, Kozlov A N Sov. Phys. JETP 27 521 (1968); Keldysh L V, Kozlov A N Zh. Eksp. Teor. Fiz. 54 978 (1968)
  58. Elesin V F, Kapaev V V, Kopaev Yu V Sov. Phys. JETP 44 375 (1976); Elesin V F, Kapaev V V, Kopaev Yu V Zh. Eksp. Teor. Fiz. 71 714 (1976)
  59. Elesin V F Sov. Phys. JETP 44 780 (1976); Elesin V F Zh. Eksp. Teor. Fiz. 71 1490 (1976)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions