Issues

 / 

2025

 / 

May

  

Physics of our days


Spectra of collective excitations of particles in normal and superfluid liquids

 
Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

We consider the specific features of collective excitations in disordered media, mainly in liquids. We discuss the difference between proper excitations in disordered media and plane harmonic waves, and the related problem of effective excitation damping. A detailed comparative analysis of the spectra of collective excitations in normal liquids and in superfluid helium is carried out. The aspects discussed include the phonon and roton parts of the spectrum, the phenomenon of 'fast sound,' shear waves, and the 'mixing in' of longitudinal and transverse excitations in liquids. Excitations in liquids are shown to determine the thermodynamic properties in both normal and superfluid states. Despite the qualitative similarity of the spectra of superfluid helium and ordinary liquids, they show significant differences, which have not yet received a proper theoretical description in our opinion. We emphasize the major differences between superfluid helium and superfluid Bose condensates of ensembles of ultracold atoms. A hypothesis is put forward regarding the possible major role that the high zero-point energy of helium atoms at ultralow temperatures plays both in understanding the features of the excitation spectra and in the superfluidity phenomenon itself.

Fulltext pdf (1.8 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.01.039852
Keywords: collective excitations, liquids, superfluid helium, heat capacity
PACS: 47.37.+q, 62.60.+v, 63.50.−x, 65.40.Ba, 67.25.−k (all)
DOI: 10.3367/UFNe.2025.01.039852
URL: https://ufn.ru/en/articles/2025/5/c/
001524725300004
2-s2.0-105008972525
2025PhyU...68..490B
Citation: Brazhkin V V "Spectra of collective excitations of particles in normal and superfluid liquids" Phys. Usp. 68 490–511 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, November 2024, revised: 10th, January 2025, 28th, January 2025

Оригинал: Бражкин В В «Спектры коллективных возбуждений частиц в нормальной и сверхтекучей жидкости» УФН 195 519–542 (2025); DOI: 10.3367/UFNr.2025.01.039852

References (83) ↓ Cited by (1) Similar articles (2)

  1. Maradudin A A, Montroll E W, Weiss G H Theory Of Lattice Dynamics In The Harmonic Approximation (New York: Academic Press, 1963); Translated into Russian, Maradudin A A, Montroll E W, Weiss G H Dinamicheskaya Teoriya Kristallicheskoi Reshetki V Garmonicheskom Priblizhenii (Moscow: Mir, 1965)
  2. Landau L D J. Phys. USSR 5 71 (1941); Landau L D Zh. Eksp. Teor. Fiz. 11 592 (1941)
  3. Bijl A Physica 7 869 (1940)
  4. Landau L D J. Phys. USSR 11 91 (1947)
  5. Henshaw D G Phys. Rev. Lett. 1 127 (1958)
  6. Yarnell J L et al Phys. Rev. Lett. 1 9 (1958)
  7. Yakovlev D G Phys. Usp. 44 823 (2001); Yakovlev D G Usp. Fiz. Nauk 171 866 (2001)
  8. Glyde H R Rep. Prog. Phys. 81 014501 (2018)
  9. Trachenko K Theory Of Liquids: From Excitations To Thermodynamics (Cambridge: Cambridge Univ. Press, 2023)
  10. Scopigno T, Ruocco G, Sette F Rev. Mod. Phys. 77 881 (2005)
  11. Trachenko K, Brazhkin V V Rep. Prog. Phys. 79 016502 (2016)
  12. Brazhkin V V Phys. Usp. 64 1049 (2021); Brazhkin V V Usp. Fiz. Nauk 191 1107 (2021)
  13. Brazhkin V V et al Phys. Usp. 55 1061 (2012); Brazhkin V V et al Usp. Fiz. Nauk 182 1137 (2012)
  14. Brazhkin V V, Trachenko K Phys. Today 65 (11) 68 (2012)
  15. Brazhkin V V, Trachenko K J. Non-Cryst. Solids 407 149 (2015)
  16. Ashcroft N W, Mermin N D Solid State Physics (New York: Holt, Rinehart and Winston, 1976); Translated into Russian, Ashcroft N W, Mermin N D Fizika Tverdogo Tela (Moscow: Mir, 1979)
  17. Malinovskii V K, Novikov V N, Sokolov A P Phys. Usp. 36 440 (1993); Malinovskii V K, Novikov V N, Sokolov A P Usp. Fiz. Nauk 163 (5) 119 (1993)
  18. Allen P B et al Philos. Mag. B 79 1715 (1999)
  19. Keyes T J. Chem. Phys. 101 5081 (1994)
  20. Lin Sh-T, Blanco M, Goddard W A (III) J. Chem. Phys. 119 11792 (2003)
  21. Lifshitz E M Usp. Fiz. Nauk 34 512 (1948)
  22. Andronikashvili É L Sov. Phys. Usp. 3 888 (1961); Andronikashvili É L Usp. Fiz. Nauk 72 697 (1960)
  23. Khalatnikov I M Teoriya Sverkhtekuchesti (Theory Of Superfluidity) (Moscow: Nauka, 1971)
  24. Yarnell J L et al Phys. Rev. 113 1379 (1959)
  25. Cocking S J Adv. Phys. 16 189 (1967)
  26. Dasannacharya B A, Rao K R Phys. Rev. 137 A417 (1965)
  27. Teixeira J et al Phys. Rev. Lett. 54 2681 (1985)
  28. Hosokawa S Z. Phys. Chem. 235 99 (2021)
  29. Egelstaff P A Neutron Scattering (Methods in Experimental Physics) Vol. 23, Pt. B (Eds D L Price, K Sköld) (San Diego: Academic Press, 1987) p. 405-470
  30. Cunsolo A et al J. Chem. Phys. 114 2259 (2001)
  31. Gorelli F et al Phys. Rev. Lett. 97 245702 (2006)
  32. Giordano V M, Monaco G Proc. Natl. Acad. Sci. USA 107 21985 (2010)
  33. Inui M et al J. Phys. Condens. Matter 33 475101 (2021)
  34. Kajihara Y et al J. Phys. Conf. Ser. 98 022001 (2008)
  35. Scopigno T et al Phys. Rev. B 64 012301 (2001)
  36. Grest G S, Nagel S R, Rahman A Phys. Rev. Lett. 49 1271 (1982)
  37. Ruocco G, Sette F Condens. Matter Phys. 11 29-46 (2008)
  38. Brazhkin V V, Danilov I V, Tsiok O B JETP Lett. 117 834 (2023); Brazhkin V V, Danilov I V, Tsiok O B Pis’ma Zh. Eksp. Teor. Fiz. 117 840 (2023)
  39. Brazhkin V V et al Phys. Rev. E 85 031203 (2012)
  40. Cockrell C, Brazhkin V V, Trachenko K Phys. Rep. 941 1 (2021)
  41. Krausser J "Non-affine lattice dynamics of disordered solids" PhD Thesis (Cambridge: Univ. of Cambridge, 2017); www.repository.cam.ac.uk/handle/1810/280686
  42. Hosokawa S et al J. Phys. Condens. Matter 25 112101 (2013)
  43. Kryuchkov N P et al Sci. Rep. 9 10483 (2019)
  44. del Rio B G, González L E Phys. Rev. B 95 224201 (2017)
  45. Bryk T et al J. Phys. Condens. Matter 32 184002 (2020)
  46. Jakse N, Bryk T J. Chem. Phys. 151 034506 (2019)
  47. Godfrin H et al Phys. Rev. B 103 104516 (2021)
  48. Pitaevskii L P Sov. Phys. JETP 9 830 (1959); Pitaevskii L P Zh. Eksp. Teor. Fiz. 36 1168 (1959)
  49. Fåk B, Scherm R Physica B 197 206 (1994)
  50. Glyde H R et al Europhys. Lett. 43 422 (1998)
  51. Svensson E C et al Phys. Rev. B 21 3638 (1980)
  52. Barker J A, Henderson D Rev. Mod. Phys. 48 587 (1976)
  53. Wang L et al Phys. Rev. E 95 032116 (2017)
  54. Kryuchkov N P et al Phys. Rev. Lett. 125 125501 (2020)
  55. NIST Chemistry WebBook. Thermophysical Properties of Fluid Systems, https://webbook.nist.gov/chemistry/fluid/
  56. Andreev A F JETP Lett. 28 556 (1978); Andreev A F Pis’ma Zh. Eksp. Teor. Fiz. 28 603 (1978)
  57. Strongin M, Zimmerman G O, Fairbank H A Phys. Rev. 128 1983 (1962)
  58. Roberts T R, Sydoriak S G Phys. Rev. 98 1672 (1955)
  59. Alvesalo T A, Haavasoja T, Manninen M T J. Low Temp. Phys. 45 373 (1981)
  60. Albergamo F et al Phys. Rev. Lett. 100 239602 (2008)
  61. Stishov S M Phys. Usp. 67 338 (2024); Stishov S M Usp. Fiz. Nauk 194 360 (2024)
  62. Enkovich P V et al Phys. Rev. B 93 014308 (2016)
  63. Roberts Th R, Sydoriak S G Phys. Fluids 3 895 (1960)
  64. Suemitsu M, Sawada Y Phys. Lett. A 71 71 (1979)
  65. Babaev E, Sudbø A, Ashcroft N W Nature 431 666 (2004)
  66. Leggett A J Quantum Liquids: Bose Condensation And Cooper Pairing In Condensed-Matter Systems (Oxford: Oxford Univ. Press, 2008)
  67. Zloshchastiev K G Eur. Phys. J. B 85 273 (2012)
  68. Campbell C E, Krotscheck E, Lichtenegger T Phys. Rev. B 91 184510 (2015)
  69. Ferré G, Boronat J Phys. Rev. B 93 104510 (2016)
  70. Beauvois K et al Phys. Rev. B 97 184520 (2018)
  71. Fåk B Phys. Rev. Lett. 109 155305 (2012)
  72. Trachenko K J. Phys. Condens. Matter 35 085101 (2023)
  73. London F Nature 141 643 (1938)
  74. Bogolubov N N Izv. Akad. Nauk SSSR Ser. Fiz. 11 (1) 77 (1947); Bogolubov N N Usp. Fiz. Nauk 93 552 (1967); Bogolubov N N J. Phys. USSR 11 23 (1947)
  75. Leggett A J Science 319 1203 (2008)
  76. Diallo S O et al Phys. Rev. B 85 140505 (2012)
  77. Glyde H R et al Phys. Rev. B 84 184506 (2011)
  78. Kapitza P Nature 141 74 (1938)
  79. Pomeranchuk I Ya Zh. Eksp. Teor. Fiz. 20 919 (1950)
  80. Allen J F, Misener A D Nature 142 643 (1938)
  81. Slenczka A, Toennies J P (Eds) Molecules In Superfluid Helium Nanodroplets. Spectroscopy, Structure, And Dynamics (Topics in Applied Physics) Vol. 145 (Cham: Springer, 2022)
  82. Dobbs E R Phys. Bl 32 591 (1976)
  83. Frenkel O Kinetic Theory Of Liquids (Oxford: The Clarendon Press, 1946); Translated from Russian, Frenkel O Kineticheskaya Teoriya Zhidkostei (Leningrad: Nauka, 1975)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions