Issues

 / 

2025

 / 

October

  

On the 270th Anniversary of the M.V. Lomonosov Moscow State University (MSU). Physics of our days


Unique microquasar SS433: new results, new issues

  a,   a, §  a, b
a Lomonosov Moscow State University, Shternberg State Astronomical Institute, Universitetskii prosp. 13, Moscow, 119234, Russian Federation
b Kazan Federal University, ul. Kremlyovskaya 18, Kazan, 420008, Russian Federation

The unique microquasar SS433 is a massive X-ray binary system at an advanced stage of evolution. The optical star is overflowing its Roche lobe and transfering mass at a very high rate onto a black hole, around which a supercritical accretion disc inclined to the orbital plane has formed with relativistic collimated outflows (jets). Both the disc and the jets precess with a period of 162.3 days. In the outer parts of the precessing jets, emission lines of hydrogen and neutral helium are formed, which move periodically across the spectrum of SS433 with an enormous amplitude of ∼ 1000 Å or on the ∼ 50,000 km s−1 velocity scale. This unique feature of SS433 attracted much attention of scientists in 1979. Over many years of research in the optical, infrared, radio, X-ray, and gamma-ray ranges, many important results have been obtained about the physical processes occurring in this microquasar, but a number of fundamental questions about the nature of SS433 remained unresolved. A 30-year spectral and photometric monitoring of SS433 has been carried out at the Sternberg Astronomical Institute of Moscow University. Using all published data for 45 years of observations, we have obtained a number of important results concerning the nature of this unique microquasar. We discovered a secular evolutionary increase in the orbital period of SS433 at a rate of (1.14 ± 0.25) × 10−7 seconds per second. On this basis, it is shown that the relativistic object in SS433 is a black hole with a mass exceeding 8 M. It is shown that the distance between the components of SS433 increases with time, which prevents the formation of a common envelope in the system. The size of the Roche lobe of the optical donor star is, on average, constant in time, which ensures stable secondary mass exchange in the system. The ellipticity of SS433's orbit was discovered, strongly supporting the model of a slaved accretion disc tracking the precession of the rotation axis of the optical star, which is inclined to the orbital plane due to an asymmetric supernova explosion accompanying the formation of a relativistic object. The parameters of the kinematic model of the system, except for the precession period, keep constant on average for 45 years. Phase shifts of the precession period were detected, but, on average, the precession period remains constant for 45 years. Microquasar SS433 is physically similar to many ultra-luminous X-ray (ULX) sources discovered in recent years in other galaxies. The registration of hard gamma-ray emission up to 200 TeV from the W50 nebula indicates a possible acceleration to ∼PeV hadrons in the region of the interaction between the powerful wind from SS433 and the matter of the nebula. In SS433, the peculiarities of supercritical accretion onto black holes are most pronounced. Therefore, further multi-wavelength studies of this unique microquasar are very promising.

Fulltext pdf (2.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.05.039904
Keywords: microquasars, SS433, spectroscopy, supercritical accretion, black holes
PACS: 97.10.Gz, 97.60.Lf, 97.80.−d (all)
DOI: 10.3367/UFNe.2025.05.039904
URL: https://ufn.ru/en/articles/2025/10/e/
Citation: Cherepashchuk A M, Dodin A V, Postnov K A "Unique microquasar SS433: new results, new issues" Phys. Usp. 68 1042–1060 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 22nd, April 2025, 13th, May 2025

Оригинал: Черепащук А М, Додин А В, Постнов К А «Уникальный микроквазар SS433: новые результаты, новые проблемы» УФН 195 1108–1128 (2025); DOI: 10.3367/UFNr.2025.05.039904

References (109) ↓ Cited by (1)

  1. Stephenson C B, Sanduleak N Astrophys. J. Suppl. Ser. 33 459 (1977)
  2. Clark D H, Murdin P Nature 276 44 (1978)
  3. Margon B et al Astrophys. J. 230 L41 (1979)
  4. Margon B et al Astrophys. J. 233 L63 (1979)
  5. Mammano A, Ciatti F, Vittone A Astron. Astrophys. 85 14 (1980)
  6. Schorn R A Sky Telescope 62 100 (1981)
  7. Milgrom M Astron. Astrophys. 76 L3 (1979)
  8. Fabian A C, Rees M J Mon. Not. R. Astron. Soc. 187 13P (1979)
  9. Shklovskij I S Sov. Astron. Lett. 5 344 (1979); Shklovskij I S Pis’ma Astron. Zh. 5 644 (1979)
  10. Crampton D, Cowley A P, Hutchings J B Astrophys. J. 235 L131 (1980)
  11. Cherepashchuk A M Mon. Not. R. Astron. Soc. 194 761 (1981)
  12. Murdin P, Clark D H, Martin P G Mon. Not. R. Astron. Soc. 193 135 (1980)
  13. Shakura N I, Sunyaev R A Astron. Astrophys. 24 337 (1973)
  14. Crampton D, Hutchings J B Astrophys. J. 251 604 (1981)
  15. Katz J I Nature Phys. Sci. 246 87 (1973)
  16. Shakura N I et al Astron. Astrophys. 348 917 (1999)
  17. Katz J I Astrophys. J. 236 L127 (1980)
  18. Roberts W J Astrophys. J. 187 575 (1974)
  19. Shakura N I Sov. Astron. 16 756 (1973); Shakura N I Astron. Zh. 49 921 (1972)
  20. van den Heuvel E P J, Ostriker J P, Petterson J A Astron. Astrophys. 81 L7 (1980)
  21. Cherepashchuk A M Sov. Astron. Lett. 7 401 (1981); Cherepashchuk A M Pis’ma Astron. Zh. 7 726 (1981)
  22. Shapiro P R, Milgrom M, Rees M J Extragalactic Radio Sources. Proc. of the IAU Symp., Albuquerque, NM, August 3-7, 1981 Vol. 97 (Eds D S Heeschen, C M Wade) (Dordrecht: D. Reidel Publ. Co., 1982) p. 209
  23. Shapiro P R, Milgrom M, Rees M J Astrophys. J. Suppl. 60 393 (1986)
  24. Fabrika S Astrophys. Space Phys. Rev. 12 1 (2004)
  25. Cherepashchuk A et al New Astron. Rev. 89 101542 (2020)
  26. Margon B Annu. Rev. Astron. Astrophys. 22 507 (1984)
  27. Cherepashchuk A M et al Astron. Rep. 66 451 (2022)
  28. Hjellming R M, Johnston K J Nature 290 100 (1981)
  29. Fejes I, Schilizzi R T, Vermeulen R C Astron. Astrophys. 189 124 (1988)
  30. Kotani T et al Publ. Astron. Soc. Jpn. 46 L147 (1994)
  31. Blundell K M et al Astrophys. J. 562 L79 (2001)
  32. Fabrika S N Mon. Not. R. Astron. Soc. 261 241 (1993)
  33. Filippenko A V et al Astron. J. 96 242 (1988)
  34. Bowler M G Astron. Astrophys. 531 A107 (2011)
  35. Dubner G M et al Astron. J. 116 1842 (1998)
  36. Blundell K M, Bowler M G, Schmidtobreick L Astron. Astrophys. 474 903 (2007)
  37. Gies D R, Huang W, McSwain M V Astrophys. J. Lett. 578 L67 (2002)
  38. Hillwig T C et al Astrophys. J. 615 422 (2004)
  39. Hillwig T C, Gies D R Astrophys. J. 676 L37 (2008)
  40. Kubota K et al Astrophys. J. 709 1374 (2010)
  41. Picchi P et al Astron. Astrophys. 640 A96 (2020)
  42. Blundell K M, Bowler M G, Schmidtobreick L Astrophys. J. 678 L47 (2008)
  43. Bowler M G Astron. Astrophys. 556 A149 (2013)
  44. Bowler M G Astron. Astrophys. 619 L4 (2018)
  45. D’Odorico S et al Nature 353 329 (1991)
  46. Kawai N et al Publ. Astron. Soc. Jpn. 41 491 (1989)
  47. Brinkmann W, Kawai N, Matsuoka M Astron. Astrophys. 218 L13 (1989)
  48. Kotani T et al The Hot Universe. Proc. of the IAU Symp. Vol. 188 (Eds K Koyama, S Kitamoto, M Itoh) (Dordrecht: Kluwer Acad., 1998) p. 358
  49. Pavlovskii K, Ivanova N Mon. Not. R. Astron. Soc. 449 4415 (2015)
  50. Pavlovskii K et al Mon. Not. R. Astron. Soc. 465 2092 (2017)
  51. Krivosheyev Yu M et al Mon. Not. R. Astron. Soc. 394 1674 (2009)
  52. Potanin S A et al Astron. Lett. 46 836 (2020); Potanin S A et al Pis’ma Astron. Zh. 46 894 (2020)
  53. Davydov V V, Esipov V F, Cherepashchuk A M Astron. Rep. 52 487 (2008); Davydov V V, Esipov V F, Cherepashchuk A M Astron. Zh. 85 545 (2008)
  54. Cherepashchuk A M et al Astron. Rep. 62 747 (2018); Cherepashchuk A M et al Astron. Zh. 95 780 (2018)
  55. Katz J I, Piran T Astrophys. Lett. 23 11 (1982)
  56. Abell G O, Margon B Nature 279 701 (1979)
  57. Press W H et al Numerical Recipes In FORTRAN. The Art Of Scientific Computing (Cambridge: Cambridge Univ. Press, 1992)
  58. Cherepashchuk A M et al Mon. Not. R. Astron. Soc. 507 L19 (2021)
  59. Berdnikov L N et al Astron. Rep. 64 310 (2020); Berdnikov L N et al Astron. Zh. 97 284 (2020)
  60. Shatsky N et al Ground-Based Astronomy in Russia. 21st Century, Proc. of the All-Russian Conf., 21-25 September, 2020, Nizhny Arkhyz, Russia (Eds I I Romanyuk et al) (Nizhny Arkhyz: SAO RAS, 2020) p. 127
  61. Dodin A V et al Astron. Rep. 68 1349 (2024)
  62. Antokhin I I, Antokhina E A Astron. Rep. 68 1239 (2024)
  63. Zahn J-P Astron. Astrophys. 57 383 (1977)
  64. Kotani T et al Publ. Astron. Soc. Jpn. 48 619 (1996)
  65. Antokhina E A, Cherepashchuk A M Sov. Astron. 31 295 (1987); Antokhina E A, Cherepashchuk A M Astron. Zh. 64 562 (1987)
  66. Fabrika S, Irsmambetova T New Views on Microquasars. The Fourth Microquasars Workshop, Corsica, France, May 27 - June 1, 2002 (Eds P Durouchoux, Y Fuchs, J Rodriguez) (Kolkata: Center for Space Physics, 2003) p. 276
  67. Cherepashchuk A M, Postnov K A, Belinski A A Mon. Not. R. Astron. Soc. 479 4844 (2018)
  68. Cherepashchuk A M, Postnov K A, Belinski A A Mon. Not. R. Astron. Soc. 485 2638 (2019)
  69. Cherepashchuk A et al New Astron. 103 102060 (2023)
  70. Waisberg I et al Astron. Astrophys. 6243 A47 (2019)
  71. Goranskij V P Peremennye Zvezdy. Variable Stars 31 (5) 1 (2011)
  72. Cherepashchuk A M Phys. Usp. 59 910 (2016); Cherepashchuk A M Usp. Fiz. Nauk 186 1001 (2016)
  73. Tutukov A V, Yungel’son L R Nauch. Inform. Astrosoveta Akad. Nauk SSSR (27) 70 (1973)
  74. Waisberg I arXiv:2503.02753; Waisberg I Open J. Astrophys. (2025), submitted
  75. Mirabel I F, Rodríguez L F Annu. Rev. Astron. Astrophys. 37 409 (1999)
  76. Fabrika S et al Nature Phys. 11 551 (2015)
  77. Fabrika S N et al Astrophys. Bull. 76 6 (2021); Fabrika S N et al Astrofiz. Byull. 76 6 (2021)
  78. King A, Lasota J-P, Middleton M New Astron. Rev. 96 101672 (2023)
  79. Pezzulli E, Valiante R, Schneider R Mon. Not. R. Astron. Soc. 458 3047 (2016)
  80. Juodžbalis I et al Nature 636 594 (2024)
  81. Poutanen J et al Mon. Not. R. Astron. Soc. 377 1187 (2007)
  82. Wagner R M Astrophys. J. 308 152 (1986)
  83. Toyouchi D et al Mon. Not. R. Astron. Soc. 532 4826 (2024)
  84. Lesur G, Ogilvie G I Mon. Not. R. Astron. Soc. 404 L64 (2010)
  85. Barker B M, O’Connell R F Phys. Rev. D 12 329 (1975)
  86. Shakura N I Sov. Astron. Lett. 11 224 (1985); Shakura N I Pis’ma Astron. Zh. 11 536 (1985)
  87. Filippova E et al Astron. Astrophys. 460 125 (2006)
  88. Atapin K et al Mon. Not. R. Astron. Soc. 446 893 (2015)
  89. Atapin K E, Fabrika S N Astron. Lett. 42 517 (2016); Atapin K E, Fabrika S N Pis’ma Astron. Zh. 42 517 (2016)
  90. Medvedev A, Fabrika S Mon. Not. R. Astron. Soc. 402 479 (2010)
  91. Medvedev P S et al Astron. Lett. 44 390 (2018); Medvedev P S et al Pis’ma Astron. Zh. 44 426 (2018)
  92. Namiki M et al Publ. Astron. Soc. Jpn. 55 281 (2003)
  93. Marshall H L et al Astrophys. J. 775 75 (2013)
  94. Medvedev P S, Khabibullin I I, Sazonov S Yu Astron. Lett. 45 299 (2019); Medvedev P S, Khabibullin I I, Sazonov S Yu Pis’ma Astron. Zh. 45 344 (2019)
  95. Middleton M J et al Mon. Not. R. Astron. Soc. 506 1045 (2021)
  96. Fogantini F A et al Astron. Astrophys. 669 A149 (2023)
  97. Cherepashchuk A M et al Astron. Astrophys. 411 L441 (2003)
  98. Cherepashchuk A M et al Mon. Not. R. Astron. Soc. 397 479 (2009)
  99. Cherepashchuk A M et al Mon. Not. R. Astron. Soc. 436 2004 (2013)
  100. Safi-Harb S et al Astrophys. J. 935 163 (2022)
  101. Churazov E M, Khabibullin I I, Bykov A M Astron. Astrophys. 688 A4 (2024)
  102. Bordas P et al Astrophys. J. Lett. 807 L8 (2015)
  103. Abeysekara A U et al Nature 562 82 (2018)
  104. Kimura S S, Murase K, Mészáros P Astrophys. J. 904 188 (2020)
  105. Li J et al Nature Astron. 4 1177 (2020)
  106. LHAASO Collab. arXiv:2410.08988
  107. Peretti E et al Astron. Astrophys. 698 A188 (2025); Peretti E et al arXiv:2411.08762
  108. Dodin A V, Postnov K A, Cherepashchuk A M, Tatarnikov A M arXiv:2503.01698
  109. Bachetti M et al Nature 514 202 (2014)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions