Issues

 / 

2024

 / 

September

  

Methodological notes


On 'Schrödinger's cat' fringes

 a, b,  a, b,   b
a Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), Skolkovo Innovation Center, Bolshoi Boulevard, Building 30, Block 1, 3rd floor, sectors G3, G7, Moscow, Moscow Region, 121205, Russian Federation

Non-Gaussian quantum states whose Wigner functions can take negative values are important both for fundamental tests of quantum physics and for the quantum information technologies that have been under active development recently. A typical example of a non-Gaussian state is the so-called Schrödinger's cat state. Its very interesting feature is that its 'classical' part (two Gaussian maxima) is geometrically separated from the 'nonclassical' part (interference fringes). In this paper, several methodological issues related to these fringes are considered.

Fulltext pdf (209 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.05.039686
Keywords: Schrödinger's cat, Wigner functions, non-Gaussian states
PACS: 03.65.Ta, 03.65.Ud, 42.50.−p (all)
DOI: 10.3367/UFNe.2024.05.039686
URL: https://ufn.ru/en/articles/2024/9/i/
001343554500007
2024PhyU...67..938G
Citation: Gorshenin V L, Nougmanov B N, Khalili F Ya "On 'Schrödinger's cat' fringes" Phys. Usp. 67 938–942 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 22nd, February 2024, revised: 25th, April 2024, 28th, May 2024

Оригинал: Горшенин В Л, Нугманов Б Н, Халили Ф Я «О полосах "кота Шрёдингера"» УФН 194 994–998 (2024); DOI: 10.3367/UFNr.2024.05.039686

References (19) ↓ Similar articles (20)

  1. Schrödinger E Naturwissenschaften 23 807 (1935)
  2. Lvovsky A I et al "Production and applications of non-Gaussian quantum states of light" arXiv:2006.16985
  3. Huang K et al Phys. Rev. Lett. 115 023602 (2015)
  4. Sychev D V et al Nature Photon. 11 379 (2017)
  5. Kuts D A et al Phys. Scr. 97 115002 (2022)
  6. Podoshvedov M S, Podoshvedov S A, Kulik S P Sci. Rep. 13 3965 (2023)
  7. Bild M et al Science 380 274 (2023)
  8. Wigner E Phys. Rev. 40 749 (1932)
  9. Bell J S Speakable And Unspeakable In Quantum Mechanics (Cambridge: Cambridge Univ. Press, 1987)
  10. Mari A, Eisert J Phys. Rev. Lett. 109 230503 (2012)
  11. Gorshenin V L Laser Phys. Lett. 21 065201 (2024)
  12. Schleich W P Quantum Optics In Phase Space (Berlin: Wiley-VCH, 2001); Translated into Russian, Schleich W P Kvantovaya Optika V Fazovom Prostranstve (Moscow: Fizmatlit, 2005)
  13. Vogel K, Risken H Phys. Rev. A 40 2847 (1989)
  14. Lvovsky A I, Raymer M G Rev. Mod. Phys. 81 299 (2009)
  15. Stratonovich R L Stochastics 1 87 (1973)
  16. Belavkin V P, Vantsyan A G "On the sufficient optimality condition for quantum information processing" quant-ph/0511043; original publication, Belavkin V P, Vantsyan A G Radiotekh. Elektron. 19 1391 (1974); Belavkin V P, Vantsyan A G Radio Eng. Electron. Phys. 19 (7) 39 (1974)
  17. Helstrom C W Quantum Detection And Estimation Theory (New York: Academic Press, 1976); Translated into Russian, Helstrom C W Kvantovaya Teoriya Proverki Gipotez I Otsenivaniya (Quantum Theory Of Hypothesis Testing And Estimation) (Moscow: Mir, 1979)
  18. Husimi K Proc. Phys.-Math. Soc. Jpn. 3rd Ser. 22 264 (1940)
  19. Lütkenhaus N, Barnett S M Phys. Rev. A 51 3340 (1995)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions