Issues

 / 

2024

 / 

September

  

On the 90th anniversary of the Lebedev Physics Institute of the Russian Academy of Sciences (LPI). Reviews of topical problems


Current status and development of nuclear physics methods of proton therapy at the Lebedev Physical Institute

 ,  , § 
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The review is devoted to the development of promising new technologies for diagnostics and radiotherapy in oncology using the Prometheus proton therapy complex based on the Lebedev Physical Institute proton synchrotron. The technologies of proton radiography and tomography, proton therapy with a scanning 'pencil' beam taking into account the intrafractional movement of a tumor, are presented. The results of research in the field of developing new binary technologies for sensitization of proton therapy using targeted nanoparticles are undergoing evaluation at the Russian proton therapy complex at the A’Tsyb Medical Radiological Research Center — a branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, which ensures the implementation of developed technologies in medical practice. Optimization of the modes is achieved with the support of mathematical modeling of nuclear reactions and sensitization reactions in proton therapy. A project for upgrading the Prometheus proton therapy complex for irradiating tumors of various localizations is presented.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.04.039676
Keywords: proton therapy, nuclear physics methods, intrafractional tumor movement, proton radiography, radiosensitizers, nanoparticles, tumor therapy
PACS: 87.10.xj, 87.55.−x, 87.56.−v (all)
DOI: 10.3367/UFNe.2024.04.039676
URL: https://ufn.ru/en/articles/2024/9/c/
001343554500001
2024PhyU...67..866Z
Citation: Zavestovskaya I N, Kolobov A V, Ryabov V A "Current status and development of nuclear physics methods of proton therapy at the Lebedev Physical Institute" Phys. Usp. 67 866–887 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, March 2024, revised: 28th, March 2024, 27th, April 2024

Оригинал: Завестовская И Н, Колобов А В, Рябов В А «Современное состояние и развитие ядерно-физических методов протонной терапии в ФИАН» УФН 194 917–940 (2024); DOI: 10.3367/UFNr.2024.04.039676

References (172) ↓ Cited by (1) Similar articles (5)

  1. Klenov G I, Khoroshkov V S Phys. Usp. 59 807 (2016); Klenov G I, Khoroshkov V S Usp. Fiz. Nauk 186 891 (2016)
  2. Durante M, Galès S (Conveners) Nuclear Physics For Medicine (Eds F Azaiez et al) (European Science Foundation: Nuclear Physics European Collaboration Committee - NuPECC, 2014) p. 11
  3. Krasavin E A Phys. Usp. 59 411 (2016); Krasavin E A Usp. Fiz. Nauk 186 435 (2016)
  4. Paganetti H Proton Beam Therapy (Bristol: IOP Publ., 2017)
  5. Chernyaev A P, Lykova E V Phys. Part. Nucl. Lett. 20 729 (2023); Chernyaev A P, Lykova E V Pis’ma Fiz. Elem. Chast. At. Yad. 20 753 (2023)
  6. Thun M J et al Carcinogenesis 31 100 (2010)
  7. World Health Organization, https://www.who.int/health-topics/cancer
  8. Kaprin A D, Starinskii V V, Shakhzadova A O (Ed.) Zlokachestvennye Novoobrazovaniya V Rossii V 2022 G. (Malignant Neoplasms In Russia In 2022 ) (Moscow: MNIOI im. P.A. Gertsena - Filial FGBU NMITs Radiologii Minzdrava Rossii, 2023)
  9. Bragg W H, Kleeman R Phil. Mag. 8 726 (1904)
  10. "Proton and Photon Consortium Registry (PPCR): A Multi Center Registry of Pediatric Patients Treated With Radiation Therapy," NCT01696721, https://www.clinicaltrials.gov/study/NCT01696721
  11. Durante M, Orecchia R, Loeffler J S Nat. Rev. Clin. Oncol. 14 483 (2017)
  12. Loeffler J S, Durante M Nat. Rev. Clin. Oncol. 10 411 (2013)
  13. Durante M, Loeffler J S Nat. Rev. Clin. Oncol. 7 37 (2010)
  14. The Particle Therapy Co-Operative Group (PTCOG), https://ptcog.site
  15. Chernyaev A P et al Med. Radiol. Rad. Bezopasn. 64 (2) 11 (2019)
  16. Ivanov E M et al Med. Radiol. Rad. Bezopasn. 67 (3) 41 (2022)
  17. Dzhelepov V P et al IEEE Trans. Nucl. Sci. 20 268 (1973)
  18. Dzhelepov V P, Komarov V I, Savchenko O V Med. Radiol. 14 (4) 54 (1969)
  19. Granov A M et al Med. Fiz. (2) 10 (2016)
  20. Balakin V E et al, in 26th Russian Particle Accelerator Conf., RUPAC’18, Protvino, Russia, 1 - 5 October 2018 (Protvino: JACoW, 2018) p. 135
  21. Pryanichnikov A A, Sokunov V V, Shemyakov A E Phys. Part. Nucl. Lett. 15 981 (2018); Pryanichnikov A A, Sokunov V V, Shemyakov A E Pis’ma Fiz. Elem. Chast. At. Yad. 15 993 (2018)
  22. Ulyanenko S E et al Issled. Praktika Meditsine 4 (S1) 107 (2017)
  23. Smyk D I et al Opukholi Golovy Shei 12 (4) 39 (2022)
  24. Gordon K et al Radiation Oncology 16 238 (2021)
  25. Gulidov I et al JBUON 26 970 (2021)
  26. Gordon K et al Rep. Pract. Oncol. Radiother. 26 (2) 203 (2021)
  27. Dr. Sergey Berezin Medical Institute (MIBS), Proton Therapy Center, https://protherapy.ru/
  28. Shulepova L I et al Med. Fiz. (3) 43 (2019)
  29. Strekopytov V "Tselebnaya moshch’ uskoritelya. Sozdan metod mgnovennogo izlecheniya ot raka" ("The healing power of the accelerator. A method for instant cure of cancer has been created"), RIA News, 30.11.2022, https://ria.ru/20221130/ultraflesh-1835099370.html
  30. Balakin V E et al The 2nd Intern. Symp. on Physics, Engineering and Technologies for Biomedicine (KnE Energy & Physics, 2018) p. 45
  31. Volz L et al Front. Oncol. 12 930850 (2022)
  32. Buchner T et al 8th IEEE RAS/EMBS Intern. Conf. for Biomedical Robotics and Biomechatronics, BioRob, 29 November - 01 December 2020, New York, NY, USA (Piscataway, NJ: IEEE, 2020) p. 981
  33. Hegarty S et al Front. Oncol. 12 821887 (2022)
  34. Rahim S et al Front. Oncol. 10 213 (2020)
  35. Yan S et al Int. J. Radiat. Oncol. Biol. Phys. 95 224 (2016)
  36. Schreuder A N et al J. Appl. Clin. Med. Phys. 24 e14099 (2023)
  37. Lebedeva Zh S, Shurakova Yu B Nauch.-Tekh. Vedomosti St. Peterburg. Politekh. Univ. Fiz.-Mat. Nauki (4(182) Pt. 1) 66 (2013)
  38. Kubiak T Br. J. Radiol. 89 20150275 (2016)
  39. Trnková P et al Phys. Medica Eur. J. Med. Phys. 54 121 (2018)
  40. Bertholet J et al Phys. Med. Biol. 64 15TR01 (2019)
  41. Han Y Radiat. Oncol. J. 37 (4) 232 (2019)
  42. Wang N et al Radiat. Oncol. 8 73 (2013)
  43. Li Y R, Kirk M, Lin L Int. J. Part. Therapy 3 320 (2016)
  44. Dolde K et al Phys. Med. Biol. 64 085011 (2019)
  45. Mizuhata M et al Cancers 10 (2) 58 (2018)
  46. Bert C, Rietzel E Radiat. Oncol. 2 24 (2007)
  47. Bert C, Herfarth K Radiat. Oncol. J. 12 170 (2017)
  48. Eley J G et al Phys. Med. Biol. 59 3431 (2014)
  49. Bert C et al Technol. Cancer Res. Treat. 13 485 (2014)
  50. Shimizu S et al PLoS ONE 9 e100425 (2014)
  51. "Spearheading global fight against cancer with proton therapy," Hokkaido Univ., https://www.global.hokudai.ac.jp/blog/tgi02-spearheading-global-fight-against-cancer-with-proton-therapy
  52. Kohli K et al BioMed. Eng. OnLine 13 144 (2014)
  53. Belikhin M A et al Bull. Lebedev Phys. Inst. 49 132 (2022); Belikhin M A et al Kratk. Soobshch. Fiz. FIAN (5) 22 (2022)
  54. Schneider U, Pedroni E Med. Phys. 22 353 (1995)
  55. Penfold S N et al Med. Phys. 36 4511 (2009)
  56. Hanson K M et al IEEE Trans. Nucl. Sci. 25 657 (1978)
  57. Hanson K M IEEE Trans. Nucl. Sci. 26 1635 (1979)
  58. Hanson K M et al Phys. Med. Biol. 26 965 (1981)
  59. Hanson K M et al Phys. Med. Biol. 27 25 (1982)
  60. Miller C et al J. Radiat. Oncol. 8 97 (2019)
  61. Pryanichnikov A A, Chernyaev A P, Khoroshkov V S Vvedenie V Fiziku I Tekhniku Protonnoi Terapii (Introduction To The Physics And Technique Of Proton Therapy) (Moscow: Fizicheskii Fakul’tet MGU, 2019)
  62. Esposito M et al Phys. Medica Eur. J. Med. Phys. 55 149 (2018)
  63. DeJongh E A et al Med. Phys. 48 1356 (2021)
  64. Amaldi U et al Nucl. Instrum. Meth. Phys. Res. A 629 337 (2011)
  65. Bashkirov V A et al Med. Phys. 43 664 (2016)
  66. Shemyakov A E et al Phys. Medica Eur. J. Med. Phys. 94 S119 (2022)
  67. Pryanichnikov A et al Phys. Medica Eur. J. Med. Phys. 94 S113 (2022)
  68. Zavestovskaya I N et al Bull. Lebedev Phys. Inst. 49 145 (2022); Zavestovskaya I N et al Kratk. Soobshch. Fiz. FIAN (5) 41 (2022)
  69. Pryanichnikov A A et al Moscow Univ. Phys. Bull. 77 657 (2022); Pryanichnikov A A et al Vestn. Mosk. Univ. Ser. 3. Fiz. Astron. (4) 59 (2022)
  70. Schultze B et al IEEE Access 9 25946 (2021)
  71. Schulte R et al IEEE Trans. Nucl. Sci. 51 866 (2004)
  72. Balakin V E et al Biophysics 61 682 (2016); Balakin V E et al Biofizika 61 866 (2004)
  73. Balakin V E et al Dokl. Biochem. Biophys. 494 231 (2020); Balakin V E et al Dokl. Ross. Akad. Nauk. Nauki Zhizni 494 458 (2020)
  74. Sheino I N et al Byull. Sibir. Med. 16 (3) 192 (2017)
  75. Kulakov V N et al Pharm. Chem. J. 50 388 (2016)
  76. Bushmanov A Yu et al Med. Radiol. Rad. Bezopasn. 64 (3) 11 (2019)
  77. Seiwert T Y, Salama J K, Vokes E E Nat. Clin. Pract. Oncol. 4 86 (2007)
  78. Connell P P, Hellman S Cancer Res. 69 (2) 383 (2009)
  79. Sauerwein W, Wittig A, Moss R, Nakagawa Y (Eds) Neutron Capture Therapy. Principles And Applications (Heidelberg: Springer, 2012)
  80. Zavestovskaya I N et al Int. J. Mol. Sci. 24 17088 (2023)
  81. Bergs J W J et al Biochim. Biophys. Acta BBA Rev. Cancer 1856 130 (2015)
  82. Roy I et al ACS Nano 16 5036 (2022)
  83. Ricketts K et al Br. J. Radiol. 91 20180325 (2018)
  84. Ruggiero A G Contribution to Conf. on Prospects for Heavy Ion Inertial Fusion, Aghia Pelaghia, Crete, Greece, September 26 - October 1, 1992 p. 1-19
  85. Becker H W, Rolfs C, Trautvetter H P Z. Phys. A 327 341 (1987)
  86. Segel R E, Hanna S S, Allas R G Phys. Rev. 139 B818 (1965)
  87. Yoon D-K, Jung J-Y, Suh T S Appl. Phys. Lett. 105 223507 (2014)
  88. Jung J-Y et al AIP Advances 6 095119 (2016)
  89. Jung J-Y et al Oncotarget 8 39774 (2017)
  90. Petringa G et al JINST 12 C03059 (2017)
  91. Cirrone G A P et al Sci. Rep. 8 1141 (2018)
  92. Bláha P et al Front. Oncol. 11 682647 (2021)
  93. Cammarata F P et al Commun. Biol. 6 388 (2023)
  94. Mazzone A et al Eur. Phys. J. Plus 134 361 (2019)
  95. Shtam T et al Sci. Rep. 13 1341 (2023)
  96. Manandhar M et al Med. Phys. 49 6098 (2022)
  97. Koldaeva E Yu et al New Challenges in Neutron Capture Therapy 2010. Proc. of the 14th Intern. Congress on Neutron Capture Therapy, Buenos Aires, 2010 p. 144
  98. Lebedev D et al RAD Conf. Proc. 4 60 (2020)
  99. Zavestovskaya I N et al Bull. Lebedev Phys. Inst. 50 279 (2023); Zavestovskaya I N et al Kratk. Soobshch. Fiz. FIAN (7) 22 (2023)
  100. Bagulya A V et al Bull. Lebedev Phys. Inst. 50 138 (2023); Bagulya A V et al Kratk. Soobshch. Fiz. FIAN (4) 27 (2023)
  101. Zavestovskaya I N et al Nanomaterials 13 2167 (2023)
  102. Maximova K et al Nanotechnology 26 065601 (2015)
  103. Afanasiev Y V et al Appl. Phys. A 64 561 (1997)
  104. Kabashin A et al Sci. Rep. 6 4732 (2016)
  105. Kharin A Yu et al Adv. Opt. Mater. 7 1801728 (2019)
  106. Oleshchenko V A et al Appl. Surf. Sci. 516 145661 (2020)
  107. Zavestovskaya I N Quantum Electron. 40 942 (2010); Zavestovskaya I N Kvantovaya Elektron. 40 942 (2010)
  108. Kabashin A V et al ACS Nano 13 9841 (2019)
  109. Popova-Kuznetsova E et al Nanomaterials 10 (1) 69 (2020)
  110. Petriev V M et al Sci. Rep. 9 2017 (2019)
  111. Belyaev I B et al Bull. Lebedev Phys. Inst. 49 185 (2022); Belyaev I B et al Kratk. Soobshch. Fiz. FIAN (6) 55 (2022)
  112. Zelepukin I V et al J. Control. Release 349 475 (2022)
  113. Pastukhov A I et al Sci. Rep. 12 9129 (2022)
  114. Tikhonowski G V et al Bull. Lebedev Phys. Inst. 49 180 (2022); Tikhonowski G V et al Kratk. Soobshch. Fiz. FIAN (6) 47 (2022)
  115. Chithrani D B et al Radiat. Res. 173 719 (2010)
  116. Lechtman E et al Phys. Med. Biol. 58 3075 (2013)
  117. Taupin F et al Phys. Med. Biol. 60 4449 (2015)
  118. Bonvalot S et al Clinic. Cancer Res. 23 908 (2017)
  119. Hainfeld J F et al Phys. Med. Biol. 49 N309 (2004)
  120. Libutti S K et al Clinic. Cancer Res. 16 6139 (2010)
  121. Lux F et al Br. J. Radiol. 92 20180365 (2019)
  122. Kim J-K et al Nanotechnology 21 425102 (2010)
  123. Kim J-K et al Phys. Med. Biol. 57 8309 (2012)
  124. Polf J C et al Appl. Phys. Lett. 98 193702 (2011)
  125. Li S et al Nanotechnology 27 455101 (2016)
  126. Bailly A et al Sci. Rep. 9 12890 (2019)
  127. Popov A A et al Sci. Rep. 9 1194 (2019)
  128. Bulmahn J C et al Nanomaterials 10 1463 (2020)
  129. Holade Y et al Catal. Sci. Eng. 10 7955 (2020)
  130. Al-Kattan A et al Nanomaterials 11 592 (2021)
  131. Shipunova V O et al ACS Appl. Mater. Interfac. 10 17437 (2018)
  132. Aghayeva U F et al ACS Nano 7 950 (2013)
  133. Filimonova M V et al Byull. Eksp. Biol. Med. 176 (11) 647 (2023)
  134. Filimonova M V et al Dokl. Ross. Akad. Nauk. Nauki Zhizni, accepted for publication 29.02.2024
  135. Zelepukin I V et al J. Control. Release 349 475 (2022)
  136. Savinov M S et al Bull. Lebedev Phys. Inst. 50 S1265 (2023); Translated into Russian, Savinov M S et al Kvantovaya Elektron. 53 575 (2023)
  137. Skribitskaya A V et al Bull. Lebedev Phys. Inst. 50 S1272 (2023); Translated into Russian, Skribitskaya A V et al Kvantovaya Elektron. 53 580 (2023)
  138. Souris K et al Med. Phys. 46 4676 (2019)
  139. Pryanichnikov A A et al Phys. Part. Nucl. Lett. 17 629 (2020); Pryanichnikov A A et al Pis’ma Fiz. Elem. Chast. At. Yad. 17 707 (2020)
  140. Gaddy M R et al Phys. Med. Biol. 63 015036 (2018)
  141. Kuznetsov M B, Kolobov A V Bull. Lebedev Phys. Inst. 49 174 (2022); Kuznetsov M B, Kolobov A V Kratk. Soobshch. Fiz. FIAN (6) 37 (2022)
  142. Unkelbach J, Paganetti H Seminars Radiat. Oncol. 28 (2) 88 (2018)
  143. Badri H et al J. Math. Biol. 72 1301 (2016)
  144. Kovalenko S Yu, Yusubalieva G M Komp’yut. Issled. Model. 10 (1) 113 (2018)
  145. Bertuzzi A et al J. Math. Biol. 66 311 (2013)
  146. Powathil G G et al PLOS Comput. Biol. 9 e1003120 (2013)
  147. Jalalimanesh A et al J. Exp. Theor. Artificial Intelligence 29 1071 (2017)
  148. Moreau M R et al Int. J. Microbiol. 29 8868151 (2021)
  149. Kuznetsov M, Kolobov A Mathematics 8 1204 (2020)
  150. Liu Y et al Theranostics 8 1824 (2018)
  151. Wälzlein C et al Phys. Med. Biol. 59 1441 (2014)
  152. Gao J et al Int. J. Cancer Ther. Oncol. 2 359 (2014)
  153. Kwon J et al Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 4 49 (2015)
  154. Lin Y et al Phys. Med. Biol. 59 7675 (2014)
  155. Lin Y et al Phys. Med. Biol. 60 4149 (2015)
  156. Azarkin M, Kirakosyan M, Ryabov V Int. J. Mol. Sci. 24 13400 (2023)
  157. Ahmad R et al Phys. Med. Biol. 61 4537 (2016)
  158. Cho J et al Phys. Med. Biol. 61 2562 (2016)
  159. Verkhovtsev A V et al J. Phys. Chem. 119 11000 (2015)
  160. Tran H N et al Nucl. Instrum. Meth. Phys. Res. B 373 126 (2016)
  161. McMahon S J Phys. Med. Biol. 64 01TR01 (2019)
  162. Withers H R Adv. Radiat. Biol. 5 241 (1975)
  163. Hufnagl A et al DNA Repair 27 28 (2015)
  164. Alexander P Trans. New York Acad. Sci. 24 966 (1962)
  165. Welter M, Rieger H PLoS ONE 8 e70395 (2013)
  166. Wu M et al J. Theor. Biol. 355 194 (2014)
  167. Stamatelos S K et al Microvascular Res. 91 8 (2014)
  168. Herring N, Paterson D J Levick’s Introduction To Cardiovascular Physiology (Boca Raton, FL: CRC Press, 2018)
  169. Jain R K, Tong R T, Munn L L Cancer Res. 67 2729 (2007)
  170. Kuznetsov M B, Kolobov A V Int. J. Mol. Sci. 24 11806 (2023)
  171. Cabral H et al Nat. Nanotechnol. 6 815 (2011)
  172. Kuznetsov M, Kolobov A Russ. J. Numer. Anal. Math. Model. 38 (5) 303 (2023)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions