Issues

 / 

2024

 / 

February

  

On the 40th anniversary of the Prokhorov General Physics Institute of the Russian Academy of Sciences (GPI). Reviews of topical problems


Hollow-core optical fibers: current state and development prospects

, , ,  
Prokhorov General Physics Institute of the Russian Academy of Sciences, Dianov Fiber Optics Research Center, ul. Vavilova 38, Moscow, 119991, Russian Federation

The history of the development and current state of hollow-core optical fibers are reviewed. The basic properties which determine the competitive advantages of hollow-core fibers and promising areas for their practical application are discussed. Recent advances in reducing optical losses and the prospects for telecommunication applications of hollow-core fibers, issues of transporting high-intensity optical radiation, and results on nonlinear compression and the generation of ultrashort pulses in gas-filled hollow-core fibers are reviewed. A separate section is devoted to the latest achievements in the development of gas fiber lasers using both optical radiation and gas discharge for pumping.

Fulltext pdf (3.4 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.12.039616
Keywords: fiber optics, hollow-core optical fibers, nonlinear fiber optics
PACS: 42.55.Wd, 42.65.−k, 42.81.−i (all)
DOI: 10.3367/UFNe.2023.12.039616
URL: https://ufn.ru/en/articles/2024/2/c/
2-s2.0-85188862366
2024PhyU...67..129P
Citation: Pryamikov A D, Gladyshev A V, Kosolapov A F, Bufetov I A "Hollow-core optical fibers: current state and development prospects" Phys. Usp. 67 129–156 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 11th, August 2023, revised: 12th, December 2023, 12th, December 2023

Оригинал: Прямиков А Д, Гладышев А В, Косолапов А Ф, Буфетов И А «Полые световоды: современное состояние и перспективы развития» УФН 194 138–168 (2024); DOI: 10.3367/UFNr.2023.12.039616

References (185) ↓ Cited by (2) Similar articles (1)

  1. Gregan R F et al Science 285 1537 (1999)
  2. Pryamikov A D et al Opt. Express 19 1441 (2011)
  3. Wang Y Y et al Opt. Lett. 36 669 (2011)
  4. Kolyadin A N et al Opt. Express 21 9514 (2013)
  5. Fokoua E N et al Adv. Opt. Photon. 15 1 (2023)
  6. Debord B et al Fibers 7 (2) 16 (2019)
  7. Bufetov I A et al Fibers 6 (2) 39 (2018)
  8. Markos C et al Rev. Mod. Phys. 89 045003 (2017)
  9. Wei C et al Adv. Opt. Photon. 9 504 (2017)
  10. Marcatili E A J, Schmeltzer R A Bell Syst. Tech. J. 43 1783 (1964)
  11. Miyagi M, Nishida S IEEE Trans. Microwave Theory Tech. 28 536 (1980)
  12. Duguay M A et al Appl. Phys. Lett. 49 13 (1986)
  13. Croitoru N et al Fiber Integr. Opt. 6 347 (1987)
  14. Wilson S, Jenkins R, Devereux R IEEE J. Quantum Electron. 23 52 (1987)
  15. Harrington J A Fiber Integr. Opt. 19 211 (2000)
  16. Birks T A et al Electron. Lett. 31 1941 (1995)
  17. Benabid F, Roberts P J J. Mod. Opt. 58 87 (2011)
  18. Roberts P J et al Opt. Express 13 236 (2005)
  19. Shephard J D et al Opt. Express 13 7139 (2005)
  20. Wheeler N V et al Opt. Lett. 39 295 (2014)
  21. Couny F et al Science 318 1118 (2007)
  22. Ghenuche P et al Opt. Lett. 37 4371 (2012)
  23. Temelkuran B et al Nature 420 650 (2002)
  24. Yu F, Knight J C Opt. Express 21 21466 (2013)
  25. Belardi W, Knight J C Opt. Lett. 39 1853 (2014)
  26. Poletti F Opt. Express 22 23807 (2014)
  27. Kosolapov A F et al Quantum Electron. 46 267 (2016); Kosolapov A F et al Kvantovaya Elektron. 46 267 (2016)
  28. Debord B et al Optica 4 209 (2017)
  29. Litchinitser N M et al Opt. Lett. 27 1592 (2002)
  30. Pryamikov A Photonics 10 1035 (2023)
  31. Pryamikov A D et al Sci. Rep. 10 2507 (2020)
  32. Denisov A N et al Quantum Electron. 46 1031 (2016); Denisov A N et al Kvantovaya Elektron. 46 1031 (2016)
  33. Ebendorff-Heidepriem H, Monro T M Opt. Express 15 15086 (2007)
  34. Cook K et al Opt. Lett. 40 3966 (2015)
  35. Chu Y et al Opt. Lett. 44 5358 (2019)
  36. Luo Y et al Opt. Fiber Technol. 58 102299 (2020)
  37. Yu F, Wadsworth W J, Knight J C Opt. Express 20 11153 (2012)
  38. Gao S, Wang Y, Wang P 2017 Conf. on Lasers and Electro-Optics Pacific Rim (Washington, DC: Optica Publ. Group, 2017), paper s2024
  39. Klimczak M et al Conf. on Lasers and Electro-Optics (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2019), paper STh1L.5
  40. Poulain M, Poulain M, Lucas J Mater. Res. Bull. 10 (4) 243 (1975)
  41. Li Y et al Opt. Mater. 96 109281 (2019)
  42. Jiang X et al Conf. on Lasers and Electro-Optics (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2016), paper AM3J.4, online
  43. Gong Z et al J. Opt. 23 115005 (2021)
  44. Désévédavy F et al Opt. Mater. 32 1532 (2010)
  45. Hu M et al Opt. Laser Technol. 158 (Pt. B) 108932 (2023)
  46. Dorofeev V V et al J. Non-Cryst. Solids 357 2366 (2011)
  47. Dorofeev V V et al Opt. Mater. 33 1911 (2011)
  48. Ventura A et al Opt. Express 28 16542 (2020)
  49. Gattass R R et al Opt. Express 24 25697 (2016)
  50. Wang Y Y et al Conf. on Lasers and Electro-Optics 2010 (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2010), paper CPDB4, CD
  51. Gao S et al Nat. Commun. 9 2828 (2018)
  52. Amrani F et al Light Sci. Appl. 10 7 (2021)
  53. Jasion G T et al Optical Fiber Communication Conf., OFC 2022 (Technical Digest Series, Eds S Matsuo et al) (Washington, DC: Optica Publ. Group, 2022), paper Th4C.7
  54. Yu F et al Opt. Express 26 10879 (2018)
  55. Osório J H et al Conf. on Lasers and Electro-Optics (Technical Digest Series) (Washington, DC: Optica Publ. Group, 2022), paper SW4K.6
  56. Zhang X et al Opt. Lett. 47 589 (2022)
  57. Wheeler N V et al Opt. Lett. 42 2571 (2017)
  58. Yu F et al APL Photon. 4 080803 (2019)
  59. Davidson I A et al OSA Advanced Photonics Congress, AP, 2020, IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF, AP, 2020 (OSA Technical Digest, Eds L Caspani et al) (Washington, DC: Optica Publ. Group, 2020), paper SoW1H.7
  60. Bradley T D et al 2018 European Conf. on Optical Communication, ECOC, Rome, Italy, 23-27 September 2018 (Piscataway, NJ: IEEE, 2018), paper Th3F.2
  61. Bradley T D et al 45th European Conf. on Optical Communication, ECOC 2019, Dublin, Ireland, 22-26 September 2019 (Piscataway, NJ: IEEE, 2019), paper Th3F.1
  62. Jasion G T et al Optical Fiber Communication Conf. Postdeadline Papers 2020 (Washington, DC: Optica Publ. Group, 2020), paper Th4B.4
  63. Sakr H et al Optical Fiber Communication Conf., OFC, 2021 (OSA Technical Digest, Eds P Dong et al) (Washington, DC: Optica Publ. Group, 2021), paper F3A.4
  64. Hong Y et al J. Lightwave Technol. 38 2849 (2020)
  65. Sakr H et al J. Lightwave Technol. 38 159 (2020)
  66. Nespola A et al J. Lightwave Technol. 39 813 (2021)
  67. Poggiolini P, Poletti F J. Lightwave Technol. 40 1605 (2022)
  68. Saljoghei A et al arXiv:2106.05343
  69. Dianov E M et al Electron. Lett. 38 783 (2002)
  70. Biriukov A S, Dianov E M Proc. SPIE 4083 81 (2000)
  71. Bobkov K et al Opt. Express 29 1722 (2021)
  72. Smith A V et al IEEE J. Sel. Top. Quantum Electron. 15 153 (2009)
  73. Mulvad H C H et al Nat. Photon. 16 448 (2022)
  74. Cooper M A et al Optica 10 1253 (2023); Cooper M A et al https://preprints.opticaopen.org/ndownloader/files/40858583
  75. Couairon A, Mysyrowicz A Phys. Rep. 441 47 (2007)
  76. Eilzer S, Wedel B Fibers 6 (4) 80 (2018)
  77. Raizer Yu P Gas Discharge Physics (Berlin: Springer-Verlag, 1991); Translated from Russian, Raizer Yu P Fizika Gazovogo Razryada (Moscow: Nauka, 1987)
  78. Bufetov I A et al Opt. Express 27 18296 (2019)
  79. Kashyap R Opt. Express 21 6422 (2013)
  80. Raizer Yu P Laser-Induced Discharge Phenomena (New York: Consultants Bureau, 1977); Translated from Russian, Raizer Yu P Lazernaya Iskra I Rasprostranenie Razryadov (Moscow: Nauka, 1974)
  81. Bufetov I A, Dianov E M Phys. Usp. 48 91 (2005); Bufetov I A, Dianov E M Usp. Fiz. Nauk 175 100 (2005)
  82. Dianov E M et al JETP Lett. 83 75 (2006); Dianov E M et al Pis’ma Zh. Eksp. Teor. Fiz. 83 84 (2006)
  83. Dianov E M, Bufetov E M, Frolov A A J. Opt. 33 171 (2004)
  84. Kolyadin A N, Kosolapov A F, Bufetov I A Quantum Electron. 48 1138 (2018); Kolyadin A N, Kosolapov A F, Bufetov I A Kvantovaya Elektron. 48 1138 (2018)
  85. Kolyadin A N et al Prikl. Fotonika 6 (3-4) 171 (2019)
  86. Bufetov I A et al Quantum Electron. 38 441 (2008); Bufetov I A et al Kvantovaya Elektron. 38 441 (2008)
  87. Bufetov I A, Fedorov V B, Fomin V K Combust. Explos. Shock Waves 22 274 (1986); Bufetov I A, Fedorov V B, Fomin V K Fiz. Goren. Vzryva (3) 18 (1986)
  88. Tauer J et al Laser Phys. Lett. 4 444 (2007)
  89. Dumitrache C, Rath J, Yalin A P Materials 7 5700 (2014)
  90. Krylov A A et al Quantum Electron. 48 589 (2018); Krylov A A et al Kvantovaya Elektron. 48 589 (2018)
  91. Frolov A A et al Proc. SPIE 6193 61930W (2006)
  92. Bufetov I "Optical discharge propagation along hollow-core fiber", media posted on 2019-06-14, https://opticapublishing.figshare.com/articles/media/Visualization1_mp4/8057399
  93. "Christmas with Fiber Fuse", Materials Revealed! National Institute for Materials Science (NIMS), https://www.youtube.com/watch?v=0yq0GoH0TH8
  94. Ramsden S A, Savic P Nature 203 1217 (1964)
  95. Sedov L I Similarity And Dimensional Methods In Mechanics (Moscow: Mir Publ., 1982); Translated from Russian, Sedov L I Metody Podobiya I Razmernosti V Mekhanike 9th ed. rev. (Moscow: Nauka, 1981); Translated into English from 10th updated Russian ed., Sedov L I Similarity And Dimensional Methods In Mechanics (Boca Raton, FL: CRC Press, 1993)
  96. Nisoli M, De Silvestri S, Svelto O Appl. Phys. Lett. 68 2793 (1996)
  97. Nagy T, Simon P, Veisz L Adv. Phys. X 6 1845795 (2021)
  98. Agrawal G P Nonlinear Fiber Optics 5th ed. (Amsterdam: Elsevier. Academic Press, 2013)
  99. Nisoli M et al Opt. Lett. 22 522 (1997)
  100. Gerullo G et al IEEE J. Sel. Top. Quantum Electron. 6 948 (2000)
  101. Li C et al Opt. Express 22 1143 (2014)
  102. Qian J et al Photonics Res. 9 477 (2021)
  103. Andriukaitis G et al Opt. Lett. 36 1914 (2011)
  104. Nagy T, Forster M, Simon P Appl. Opt. 47 3264 (2008)
  105. Böhle F et al Laser Phys. Lett. 11 095401 (2014)
  106. Heckl O H et al Opt. Express 19 19142 (2011)
  107. Guichard F et al Opt. Express 23 7416 (2015)
  108. Köttig F et al Optica 4 1272 (2017)
  109. Köttig F et al Opt. Express 28 9099 (2020)
  110. Losev L et al Fibers 11 (2) 22 (2023)
  111. Murari K et al Optica 3 816 (2016)
  112. Murari K et al Photonics Res. 10 637 (2022)
  113. Wagner N L et al Phys. Rev. Lett. 93 173902 (2004)
  114. Im S-J, Husakou A, Herrmann J Opt. Express 17 13050 (2009)
  115. Joly N Y et al Phys. Rev. Lett. 106 203901 (2011)
  116. Ermolov A et al Opt. Lett. 44 5005 (2019)
  117. Balciunas T et al Nat. Commun. 6 6117 (2015)
  118. Luan J, Russell P St J, Novoa D Opt. Express 29 13787 (2021)
  119. Travers J C et al Nat. Photon. 13 547 (2019)
  120. Ermolov A et al Phys. Rev. A 92 033821 (2015)
  121. Sollapur R et al Light Sci. Appl. 6 e17124 (2017)
  122. Yatsenko Yu P et al Quantum Electron. 47 553 (2017); Yatsenko Yu P et al Kvantovaya Elektron. 47 553 (2017)
  123. Adamu A I et al Sci. Rep. 9 4446 (2019)
  124. Gao S-F et al Laser Photon. Rev. 16 2100426 (2022)
  125. Benabid F et al Science 298 399 (2002)
  126. Benabid F et al Phys. Rev. Lett. 93 123903 (2004)
  127. Gladyshev A V et al Conf. on Lasers and Electro-Optics (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2017), paper STu1K.2
  128. Gladyshev A V et al IEEE J. Sel. Top. Quantum Electron. 24 0903008 (2018)
  129. Gladyshev A V et al Quantum Electron. 47 491 (2017); Gladyshev A V et al Kvantovaya Elektron. 47 491 (2017)
  130. Gladyshev A V et al Quantum Electron. 47 1078 (2017); Gladyshev A V et al Kvantovaya Elektron. 47 1078 (2017)
  131. Astapovich M S et al IEEE Photon. Technol. Lett. 31 78 (2019)
  132. Gladyshev A V et al 2019 Conf. on Lasers and Electro-Optics Europe and European Quantum Electronics Conf. (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2019), paper cj_3_3
  133. Wang Y et al Opt. Lett. 45 1938 (2020)
  134. Wang Y et al J. Lightwave Technol. 39 3560 (2021)
  135. Krylov A A et al Quantum Electron. 52 274 (2022); Krylov A A et al Kvantovaya Elektron. 52 274 (2022)
  136. Krylov A A et al Quantum Electron. 52 685 (2022); Krylov A A et al Kvantovaya Elektron. 52 685 (2022)
  137. Huang W et al Laser Phys. Lett. 16 085107 (2019)
  138. Li Z et al Opt. Lett. 43 4671 (2018)
  139. Cao L et al Opt. Express 26 5609 (2018)
  140. Zhang X et al IEEE Photon. Technol. Lett. 34 1007 (2022)
  141. Hanna D, Pointer D, Pratt D IEEE J. Quantum Electron. 22 332 (1986)
  142. Jordan C et al Appl. Phys. B 59 471 (1994)
  143. Konyashchenko A V, Losev L L, Tenyakov S Yu Opt. Express 15 11855 (2007)
  144. Didenko N V et al Quantum Electron. 45 1101 (2015); Didenko N V et al Kvantovaya Elektron. 45 1101 (2015)
  145. Vicario C et al Opt. Lett. 41 4719 (2016)
  146. Konyashchenko A V et al Quantum Electron. 47 593 (2017); Konyashchenko A V et al Kvantovaya Elektron. 47 593 (2017)
  147. Konyashchenko A V, Losev L L, Pazyuk V S Opt. Lett. 44 1646 (2019)
  148. Didenko N V, Konyashchenko A V, Losev L L Quantum Electron. 50 834 (2020); Didenko N V, Konyashchenko A V, Losev L L Kvantovaya Elektron. 50 834 (2020)
  149. Gladyshev A V et al Quantum Electron. 49 1089 (2019); Gladyshev A V et al Kvantovaya Elektron. 49 1089 (2019)
  150. Kergoustin D et al 2019 Conf. on Lasers and Electro-Optics Europe and European Quantum Electronics Conf. (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2019), paper cd_3_5
  151. Loranger S, Russell P St J, Novoa D J. Opt. Soc. Am. B 37 3550 (2020)
  152. Gladyshev A V et al Opt. Mater. Express 10 3081 (2020)
  153. Gladyshev A V et al Optoelectron. Instrum. Data Proces. 59 10 (2023); Gladyshev A V et al Avtometriya 59 (1) 15 (2023)
  154. Yatsenko Yu P, Gladyshev A V, Bufetov I A Quantum Electron. 51 1068 (2021); Yatsenko Yu P, Gladyshev A V, Bufetov I A Kvantovaya Elektron. 51 1068 (2021)
  155. Gladyshev A et al Photonics 9 997 (2022)
  156. Vasudevan Nampoothiri A V et al Proc. SPIE 7580 758001 (2010)
  157. Jones A M et al Opt. Express 19 2309 (2011)
  158. Vasudevan Nampoothiri A V et al Opt. Mater. Express 2 948 (2012)
  159. Wang Z et al Opt. Express 22 21872 (2014)
  160. Abu Hassan M R et al Optica 3 218 (2016)
  161. Xu M, Yu F, Knight J Opt. Lett. 42 4055 (2017)
  162. Huang W et al Opt. Laser Technol. 151 108090 (2022)
  163. Huang W et al Opt. Lett. 47 2354 (2022)
  164. Zhou Z et al Opt. Express 26 19144 (2018)
  165. Aghbolagh F B A et al Opt. Lett. 44 383 (2019)
  166. Cui Y et al Optica 6 951 (2019)
  167. Cui Y et al J. Lightwave Technol. 40 2503 (2022)
  168. Zhou Z et al Light Sci. Appl. 11 15 (2022)
  169. Zhou Z et al Opt. Lett. 47 5785 (2022)
  170. Smith P W Appl. Phys. Lett. 19 132 (1971)
  171. Jensen R E, Tobin M S Appl. Phys. Lett. 20 508 (1972)
  172. Gonchukov S A et al Sov. J. Quantum Electron. 5 232 (1975); Gonchukov S A et al Kvantovaya Elektron. 2 406 (1975)
  173. Shi X et al Proc. SPIE 6767 67670H (2007)
  174. Shi X et al Appl. Phys. B 91 377 (2008)
  175. Shi X et al IEEE Photon. Technol. Lett. 20 650 (2008)
  176. Bateman S A et al CLEO: Science and Innovations, 2014, Postdeadline Paper Digest (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2014), paper STh5C.10, online
  177. Bateman S A et al Advanced Photonics: Specialty Optical Fibers 2014 (OSA Technical Diges) (Washington, DC: Optica Publ. Group, 2014), paper SoM4B.3, online
  178. Love A L et al CLEO: 2015 (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2015), paper SF2F.4
  179. Wadsworth W J, Love A L, Knight J C Workshop On Specialty Optical Fibers And Their Applications (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2015), paper WT1A.1, online
  180. Endo M, Walter R F (Eds) Gas Lasers (Optical Science and Engineering) Vol. 121 (Boca Raton, FL: CRC Press. Taylor and Francis, 2007)
  181. Debord B et al CLEO:2011 — Laser Applications To Photonic Applications (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 2011), paper CThD5, CD
  182. Moisan M et al Rev. Phys. Appl. 17 707 (1982)
  183. Gladyshev A et al Photonics 9 752 (2022)
  184. Bufetov I A et al Dokl. Phys. 68 107 (2023); Bufetov I A et al Dokl. Ross. Akad. Nauk. Fiz. Tekh. Nauki 509 3 (2023)
  185. Gladyshev A V et al Bull. Lebedev Phys. Inst. 50 403 (2023); Gladyshev A V et al Kr. Soobshch. Fiz. FIAN (9) 62 (2023)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions