Issues

 / 

2024

 / 

October

  

Methodological notes


Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motors

  a, b,   a, b, §  c, d
a Belarussian State University, prosp. Nezavisimosti 4, Minsk, 220030, Belarus
b Joint Institute of Dalian Polytechnic University and the Belarusian State University, Dalian, People's Republic of China
c Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation
d Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation

The dependence of the energy spectrum of a quantum particle in an infinite V-shaped potential well on its asymmetry parameter is analyzed. The relationship between the occurrence of this dependence and different depths of quantum particle penetration into classically forbidden regions under the well walls is shown. In particular, an estimate of the energy spectrum using the Bohr—Sommerfeld quantization rule, which does not take into account the particle penetration into subbarrier regions, shows that there is no dependence on the well asymmetry parameter. An exception is the transition to the case of a vertical wall, when the semiclassical approach is characterized by a special boundary condition. The obtained results are illustrated by the dependence of the tunnel current of a Brown„ian motor (ratchet) with an applied fluctuating force on the asymmetry of the sawtooth potential. With a certain selection of ratchet parameters, considering zero-point oscillations describes the occurrence of a particle flow in the direction opposite to that obtained without such consideration.

Fulltext pdf (313 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.06.039704
Keywords: energy spectrum, asymmetric systems, Airy functions, Brownian motors, ratchets
PACS: 03.65.Ge, 05.40.−a, 05.60.Gg (all)
DOI: 10.3367/UFNe.2024.06.039704
URL: https://ufn.ru/en/articles/2024/10/f/
2-s2.0-85211493699
Citation: Rozenbaum V M, Shapochkina I V, Trakhtenberg L I "Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motors" Phys. Usp. 67 1046–1055 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 15th, February 2024, revised: 5th, May 2024, 27th, June 2024

Оригинал: Розенбаум В М, Шапочкина И В, Трахтенберг Л И «Квантовая частица в V-образной яме произвольной асимметрии. Броуновские моторы» УФН 194 1108–1117 (2024); DOI: 10.3367/UFNr.2024.06.039704

References (42) Similar articles (20) ↓

  1. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motorsPhys. Usp. 62 496–509 (2019)
  2. V.S. Olkhovsky “On the multiple internal reflections of particles and phonons tunneling in one, two, or three dimensionsPhys. Usp. 57 1136–1145 (2014)
  3. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  4. E.A. Nelin “Impedance model for quantum-mechanical barrier problemsPhys. Usp. 50 293–299 (2007)
  5. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  6. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  7. V.P. Demutskii, R.V. Polovin “Conceptual problems in quantum mechanicsSov. Phys. Usp. 35 (10) 857–896 (1992)
  8. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  9. E.V. Shuryak “Stochastic trajectory generation by computerSov. Phys. Usp. 27 448–453 (1984)
  10. A.I. Akhiezer, R.V. Polovin “Why IT IS impossible to introduce hidden parameters into quantum mechanicsSov. Phys. Usp. 15 500–512 (1973)
  11. E.L. Nolle “Tunneling photoeffect mechanism in metallic nanoparticles activated by cesium and oxygenPhys. Usp. 50 1079–1082 (2007)
  12. S.P. Efimov “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problemPhys. Usp. 65 952–967 (2022)
  13. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  14. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  15. O.G. Bakunin “Correlation and percolation properties of turbulent diffusionPhys. Usp. 46 733–744 (2003)
  16. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  17. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  18. S.E. Kuratov, D.S. Shidlovski et alTwo scales of quantum effects in a mesoscopic system of degenerate electronsPhys. Usp. 64 836–851 (2021)
  19. G.V. Shpatakovskaya “Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ionsPhys. Usp. 62 186–197 (2019)
  20. S.V. Vonsovskii, M.S. Svirskii “The Klein paradox and the zitterbewegung of an electron in a field with a constant scalar potentialPhys. Usp. 36 (5) 436–439 (1993)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions