Issues

 / 

2024

 / 

January

  

Methodological notes


A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosm

 
A M Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 109017, Russian Federation

The 1934 paper by A N Kolmogorov [1], "Random Motions," hereinafter ANK34, uses a Fokker—Planck-type equation for a 6-dimensional vector with a total rather than a partial derivative with respect to time, and with a Laplacian in the space of velocities. The diffusion coefficient in this case is ε, the rate of energy generation/dissipation. The equation is obtained by specifying the accelerations of the particles of the ensemble by Markov processes, i.e., random processes δ-correlated in time and with each other. The fundamental solution of this equation was already indicated in [1] and was used by A M Obukhov [2] in 1958 to describe a turbulent flow in the inertial interval [3]. It was only recently [4, 5] noticed that the Fokker—Planck-type equation written by Kolmogorov in [1] contains a description of the statistics of other random natural processes, earthquakes, sea waves, and others [5]. This equation, by a change of variables with scales for velocities and for coordinates, is reduced to a self-similar form that does not explicitly contain the diffusion coefficient [6]. Numerical calculations confirm the presence of such scales in systems with the number N of events, in ensembles starting from N=10. For N = 100, these scales almost exactly coincide with the ANK34 theory. This theory, in principle, containing the results of 1941, paved the way for more complex random systems with enough parameters to form an external similarity parameter. This leads to a change in the characteristics of a random process, for example, to a change in the slope of the time spectrum, as in the case of earthquakes and in a number of other processes (sea waves, cosmic ray energy spectrum, inundation zones during floods, etc.). A review of specific random processes studied experimentally provides a methodology for how to proceed when comparing experimental data with the ANK34 theory. Thus, empirical data illustrate the validity of the fundamental laws of probability theory. The article is an abridged version of the author's monograph [5], where for the first time the ideas of ANK34 were used to explain in a probabilistic sense many experimental patterns that have been considered by pure empiricism for decades.

Fulltext pdf (774 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.05.039355
Keywords: random motions, Fokker—Planck—Kolmogorov equation, second moments of probability distribution for coordinates and velocities, theory of similarity and dimensions, statistical laws of nature
PACS: 05.40.−a, 91.30.−f, 92.60.−e (all)
DOI: 10.3367/UFNe.2023.05.039355
URL: https://ufn.ru/en/articles/2024/1/g/
001198734600002
2-s2.0-85186571332
2024PhyU...67...80G
Citation: Golitsyn G S "A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosm" Phys. Usp. 67 80–90 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, February 2023, 11th, May 2023

Оригинал: Голицын Г С «Работа А.Н. Колмогорова 1934 г. — основа для объяснения статистики природных явлений макромира» УФН 194 86–96 (2024); DOI: 10.3367/UFNr.2023.05.039355

References (55) ↓ Cited by (3) Similar articles (20)

  1. Kolmogoroff A Ann. Math. 35 116 (1934), Translation into Russian of A N Kolmogorov’s works, see many publications since 1983
  2. Obukhov A M Advances In Geophysics Vol. 6 (Eds H E Landsberg, Van Mieghem) (New York: Academic Press, 08) p. 113
  3. Monin A S, Yaglom A M Statistical Fluid Mechanics: Mechanics Of Turbulence Vol. 2 (Cambridge, MA: MIT Press, 1975); Translated from Russian, Monin A S, Yaglom A M Statisticheskaya Gidromekhanika. Mekhanika Turbulentnosti Vol. 2 (Moscow: Nauka, 1967)
  4. Golitsyn G S Russ. Meteorol. Hydrol. 43 (3) 135 (2018); Golitsyn G S Meteorol. Gidrol. (3) 5 (2018)
  5. Golitsyn G S Veroyatnostnye Struktury Makromira : Zemletryaseniya, Uragany, Navodneniya... (Probabilistic Structures Of Macroworld: Earthquakes, Hurricanes, Floods...) (Moscow: Fizmatlit, 2022)
  6. Gledzer E B, Golitsyn G S Dokl. Phys. 55 (8) 369 (2010); Gledzer E B, Golitsyn G S Dokl. Ross. Akad. Nauk 433 (4) 466 (2010)
  7. Barenblatt G I Scaling (Cambridge: Cambridge Univ. Press, 2003); Barenblatt G I Avtomodel’nye Yavleniya — Analiz Razmernostei I Skeiling (Self-similar Phenomena — Dimensional And Scaling Analysis) (Dolgoprudny: Intellekt, 2009)
  8. Barenblatt G I, Zel’dovich Ya B Russ. Math. Surv. 26 (2) 45 (1971); Barenblatt G I, Zel’dovich Ya B Usp. Matem. Nauk 26 (2) 115 (1971)
  9. Barenblatt G I, Zeldovich Ya B Annu. Rev. Fluid Mech. 4 285 (1972)
  10. Toba Y J. Phys. Oceanogr. 8 494 (1978)
  11. Toba Y J. Oceanogr. Soc. Jpn. 29 (3) 209 (1973)
  12. Bird P Geochem. Geophys. Geosyst. 4 (3) 1027 (2003)
  13. Golitsyn G S Russ. J. Earth Sci. 17 ES5001 (2017)
  14. Emanuel K A Annu. Rev. Earth Planet Sci. 31 75 (2003)
  15. Golitsyn G S Dokl. Earth Sci. 354 (4) 633 (1997); Golitsyn G S Dokl. Ross. Akad. Nauk 354 (4) 535 (1997)
  16. Rasmussen E A, Turner J (Eds) Polar Lows: Mesoscale Weather Systems In Polar Regions (Cambridge: Cambridge Univ. Press, 2003)
  17. Golitsyn G S Dokl. Earth Sci. 346 (1) 166 (1996); Golitsyn G S Dokl. Ross. Akad. Nauk 346 (4) 536 (1996)
  18. Kasahara K Mechanics Of Earthquakes (Cambridge: Cambridge Univ. Press, 1981)
  19. Schubert G, Turcotte D L, Olson P Mantle Convection In The Earth And Planets (Cambridge: Cambridge Univ. Press, 2001)
  20. Golitsyn G S Comput. Seismol. (32) 138 (2001)
  21. Smirnov V B, Ispolinova S I Dokl. Ross. Akad. Nauk 342 (6) 809 (1995)
  22. Volant P, Grasso J-R J. Geophys. Res. 99 21879 (1994)
  23. Nikolaev A V, Galkin I N (Exec. Eds) Navedennaya Seismichnost’: Gosudarstvennaya Nauchno-Tekhnicheskaya Programma Rossii "Global’nye Izmeneniya Prirodnoi Sredy I Klimata" (Induced Seismicity: State Scientific And Technical Program "Global Changes In The Natural Environment And Climate") (Moscow: Nauka, 1994)
  24. Cheng B et al Nature 382 518 (1996)
  25. Golitsyn G S Astron. Lett. 24 (6) 716 (1998); Golitsyn G S Pis’ma Astron. Zh. 24 (11-12) 827 (1998)
  26. Berezinskii V S et al Astrophysics Of Cosmic Rays (Ed. V L Ginzburg) (Amsterdam: North-Holland, 1990); Translated from Russian, Berezinskii V S et al Astrofizika Kosmicheskikh Luchei (Ed. V L Ginzburg) 2nd ed. (Amsterdam: North-Holland, 1990)
  27. Malkov M A, Diamond P H Phys. Plasmas 8 (5) 2401 (2001)
  28. Karelin A V et al J. Exp. Theor. Phys. 119 (3) 448 (2014); Karelin A V et al Zh. Eksp. Teor. Fiz. 146 (3) 513 (2014)
  29. Golitsyn G S Astron. Lett. 31 (7) 446 (2005); Golitsyn G S Pis’ma Astron. Zh. 31 (7) 500 (2005)
  30. Golitsyn G S Phys. Usp. 51 (7) 723 (2008); Golitsyn G S Usp. Fiz. Nauk 178 (7) 753 (2008)
  31. Komen G J et al Dynamics And Modelling Of Ocean Waves (Cambridge: Cambridge Univ. Press, 1994)
  32. Hasselmann K et al Ergänzung Deutsch. Hydrogr. Z. 8 (12) 1 (1973)
  33. Golitsyn G S, Troitskaya Yu I, Baydakov G A Izv. Atmos. Ocean. Phys. 57 (1) 60 (2021); Golitsyn G S, Troitskaya Yu I, Baydakov G A Izv. Ross. Akad. Nauk Fiz. Atmos. Okeana 57 (1) 67 (2021)
  34. Gagnaire E, Benoit M, Badulin S I J. Fluid Mech. 669 178 (2011)
  35. Guillaume A et al J. Atmos. Sci. 75 (7) 2187 (2018)
  36. von Savigny C et al Geophys. Res. Lett. 38 (2) L02806 (2011)
  37. Mandelbrot B Fractals, Form, Chance, And Dimension (San Francisco: W.H. Freeman and Co., 1977)
  38. Lovejoy S Science 216 (4542) 185 (1982)
  39. Golitsyn G S, Chkhetiani O G, Vazaeva N V Izv. Atmos. Ocean. Phys. 58 (6) 645 (2022)
  40. Oort A H Mon. Weather Rev. 92 (11) 483 (1964)
  41. Golitsyn G S Izv. Atmos. Ocean. Phys. 44 (5) 537 (2008); Golitsyn G S Izv. Ross. Akad. Nauk Fiz. Atmos. Okeana 44 (5) 579 (2008)
  42. Golitsyn G S Adv. Atmos. Sci. 26 585 (2009)
  43. Golitsyn G S Izv. Atmos. Ocean. Phys. 48 (3) 350 (2012); Golitsyn G S Izv. Ross. Akad. Nauk Fiz. Atmos. Okeana 48 (3) 391 (2012)
  44. Munk W et al Proc. R. Soc. Lond. A 456 1217 (2000)
  45. Mityagina M I, Lavrova O Yu Issled. Zemli Kosmosa (5) 72 (2009)
  46. Andrianov S A et al Izv. Atmos. Ocean. Phys. 39 (1) 1 (2003); Andrianov S A et al Izv. Ross. Akad. Nauk Fiz. Atmos. Okeana 39 (1) 3 (2003)
  47. Kaula W M Theory Of Satellite Geodesy; Applications Of Satellites To Geodesy (Waltham, MA: Blaisdell Publ. Co., 1966)
  48. Turcotte D L Fractals And Chaos In Geology And Geophysics 2nd ed. (Cambridge: Cambridge Univ. Press, 1997)
  49. Rexer M, Hirt C Surv. Geophys. 36 (6) 803 (2015)
  50. Gledzer E B, Golitsyn G S Russ. J. Earth Sci. 19 ES6007 (2019)
  51. Gledzer E B, Golitsyn G S Dokl. Earth Sci. 485 (Pt. 2) 391 (2019); Gledzer E B, Golitsyn G S Dokl. Ross. Akad. Nauk 485 (4) 493 (2019)
  52. Golitsyn G S Statistika I Dinamika Prirodnykh Protsessov I Yavlenii (Statistics And Dynamics Of Natural Processes And Phenomena, Synergetics: From Past To Future, No. 68) (Moscow: Krasand, 2012)
  53. Smith K, Ward R Floods : Physical Processes And Human Impacts (Chichester: Wiley, 1998)
  54. Golitsyn G S Water Resources 45 (4) 503 (2018); Golitsyn G S Vodn. Resursy 45 (4) 380 (2018)
  55. Golitsyn G S, Chernokulsky A V, Vazaeva N V Dokl. Earth Sci. 513 (1) 134 (2023)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions