Issues

 / 

2024

 / 

January

  

Reviews of topical problems


New approaches to molecular laser separation of uranium isotopes

 
Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation

Significant interest in the laser separation of uranium isotopes at the turn of the century stimulated the search for and development of a number of methods and approaches that use both atomic and molecular mechanisms of isotope separation. Effective laser methods for the separation of uranium isotopes are currently under active development in many countries. New approaches to the molecular laser isotope separation (MLIS) of uranium are reviewed. They are based on resonant isotope-selective multiphoton excitation of high vibrational states (2ν3 and 3ν3) of 235UF6 and 238UF6 molecules in gas-dynamically cooled molecular flows by bichromatic IR laser radiation and the subsequent dissociation of the excited molecules by the same laser pulses. The foundations of these approaches are analyzed. The results of experiments on two- and three-photon excitation of SF6 molecules, whose spectroscopic properties are similar to those of UF6 molecules, into the 2ν3 and 3ν3 vibrational states by, respectively, two- and three-frequency radiation of pulsed CO2 lasers are presented and discussed. Specific setups and parameters of resonant two- and three-photon isotope-selective excitation of 235UF6 and 238UF6 molecules into the 2ν3 and 3ν3 vibrational states by bichromatic IR radiation from two pulsed CF4 lasers and two para-H2 lasers with emissions in the 16-μm region are proposed and analyzed. A method is considered for the isotope-selective excitation and dissociation of UF6 molecules in a mixture with a sensitizer (SF6 molecules) under nonequilibrium thermodynamic conditions of a shock wave. Low-energy MLIS methods for uranium based on the proposed approaches are shown to be feasible.

Fulltext pdf (720 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.02.039325
Keywords: atoms, molecules, clusters, uranium, molecular and cluster beams, laser spectroscopy, laser-induced selective processes in molecules and clusters, laser separation of uranium isotopes, laser physics
PACS: 07.77.Gx, 28.60.+s, 33.80-b, 36.40.−c, 42.62.−b, 42.62.Fi, 82.50.Bc (all)
DOI: 10.3367/UFNe.2023.02.039325
URL: https://ufn.ru/en/articles/2024/1/d/
2-s2.0-85186577793
2024PhyU...67...44M
Citation: Makarov G N "New approaches to molecular laser separation of uranium isotopes" Phys. Usp. 67 44–54 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, January 2023, revised: 17th, February 2023, 20th, February 2023

Оригинал: Макаров Г Н «Новые подходы к молекулярному лазерному разделению изотопов урана» УФН 194 48–59 (2024); DOI: 10.3367/UFNr.2023.02.039325

References (112) ↓ Similar articles (20)

  1. Makarov G N Phys. Usp. 58 670 (2015); Makarov G N Usp. Fiz. Nauk. 185 717 (2015)
  2. Makarov G N Phys. Usp. 65 531 (2022); Makarov G N Usp. Fiz. Nauk 192 569 (2022)
  3. Letokhov V S Nature 277 605 (1979)
  4. Bagratashvili V N et al Multiple Photon Infrared Laser Photophysics And Photochemistry (Chur: Harwood Acad. Publ., 1985)
  5. Cantrell C D (Ed.) Multiple-Photon Excitation And Dissociation Of Polyatomic Molecules (Topics in Current Physics) Vol. 35 (Berlin: Springer-Verlag, 1986)
  6. Lyman J L Laser Spectroscopy And Its Applications (Optical Engineering) Vol. 11 (Eds L J Radziemski, R W Solarz, J A Paisner) (New York: M. Dekker, 1987) p. 417
  7. Eerkens J W (Ed) Selected Papers On Laser Isotope Separation — Science And Technology (SPIE Milestone Series) Vol. MS 113 (Bellingham, WA: SPIE Optical Engineering Press, 1995) p. 108-147, 257-687
  8. Metz W D "Uranium enrichment: laser methods nearing full-scale test" Science 185 602 (1974)
  9. Glass A J (Sci. Ed.), Cummings K L (Gen. Ed.) "Laser Program Annual Report - 1975" UCRL-50021-75 (Livermore, CA: Lawrence Livermore Laboratory, Univ. of California, 1975) p. 1-55
  10. "Soviet Research on Laser Isotope Separation for Uranium Enrichment." Central Intelligence Agency. Freedom of Information Act Electronic Reading Room, https://www.cia.gov/readingroom/document/0000680142
  11. Guyot J et al. "Uranium enrichment activities: the SILVA program," Demande d’autorisation NIG No. 316, DCC, SACLAY, DPE, 28 June 1994, https://inis.iaea.org/collection/NCLCollection-Store/_Public/27/010/27010992.pdf?r=1&r=1
  12. Camarcat N et al Proc. SPIE 1859 14 (1993)
  13. Becker F S, Kompa K L Nucl. Technol. 58 329 (1982)
  14. Bokhan P A et al Laser Isotope Separation In Atomic Vapor (Berlin: Wiley-VCH, 2006)
  15. Radziemski L J, Solarz R V, Paisner J A (Eds) Laser Spectroscopy And Its Applications Vol. 11 Optical Engineering (New York: M. Dekker, 1987), Ch. 3
  16. Grigoryev I S, Labozin V P, Pesnya A V Izotopy: Svoistva, Poluchenie, Primenenie (Isotopes: Properties, Preparation, Application) Vol. 1 (Ed. V Yu Baranov) (Moscow: Fizmatlit, 2005) p. 374
  17. Ramakoteswara Rao P Current Sci. 85 615 (2003)
  18. Mathi P et al Proc. Natl. Acad. Sci. India A (2015)
  19. Schneider K R "LIS: The View from Urenco" Proc. Of The 6th Intern. Symp. On Advanced Nuclear Energy Research: Innovative Laser Technologies In Nuclear Energy, March 23-25, 1994, Mito, Ibaraki, Japan (Mito, Japan: Japan Atomic Energy Research Institute, 1995) p. 280
  20. Jensen R J et al Laser Focus 12 (5) 51 (1976)
  21. Jensen R J, Sullivan J Al, Finch F T Separat. Sci. Technol. 15 509 (1980)
  22. Jensen R J, Judd O P, Sullivan J A Los Alamos Sci. (4) 2 (1982)
  23. Greenland P T Contemp. Phys. 31 405 (1990)
  24. Fuß W "Laser isotope separation and proliferation risks" Report MPQ 346, February 2015 (Garching: Max-Planck-Institute für Quantenoptik, 2015); https://www.mpq.mpg.de/5178012/MPQ346.pdf
  25. Baranov V Yu et al Izotopy: Svoistva, Poluchenie, Primenenie (Isotopes: Properties, Preparation, Application) Vol. 1 (Ed. V Yu Baranov) (Moscow: Fizmatlit, 2005) p. 474
  26. Tiee J J, Wittig C Appl. Phys. Lett. 30 420 (1977)
  27. Tiee J J, Fischer T A, Wittig C Rev. Sci. Instrum. 50 958 (1979)
  28. Byer R L IEEE J. Quantum Electron. 12 732 (1976)
  29. Atomnaya Energiya (Atomic Energy) 2.0, https://www.atomic-energy.ru/Megatons-to-Megawatts?
  30. "Megatons to Megawatts program concludes," World Nuclear News, 11 December (2013), https://www.world-nuclear-news.org/ENF-Megatons-to-Megawatts-program-concludes-1112134.html
  31. Kim J, Eerkens J W, Miller W H Nucl. Sci. Eng. 156 219 (2007)
  32. Kim J W et al "Current status of the MLIS uranium enrichment process" Proc. of the Korean Nuclear Society Spring Meeting, Korea, May 22, 2009
  33. Eerkens J W, Kim J AIChE J. 56 2331 (2010)
  34. Ronander E, Strydom H J, Botha R L Prama J. Phys. 82 (1) 49 (2014)
  35. Ferguson C D, Boureston J "Focusing on Iran’s Laser Enrichment Program" https://www.iranwatch.org/sites/default/files/perspex-fwi-Laser.pdf
  36. Khlopkov A J. Nonproliferation Rev. 20 (1) 39 (2013)
  37. Ding H-B, Shen Z Y, Zhang C H Proc. SPIE 1859 234 (1993)
  38. Xu B et al National Meeting Of The American Chem. Soc., Boston, MA, USA, 22-27 Apr. 1990, CONF-900402 (Washington, DC: American Chemical Soc., Division of Nucl. Chem. and Technol., 1990) p. 21, Paper NUCL 68; https://inis.iaea.org/search/search.aspx?orig_q=RN:21077879
  39. Li Y et al Opt. Commun. 283 2575 (2010)
  40. Eerkens J W et al Conf. On Lasers And Electro-Optics, San Francisco, California, United States, 9-13 June 1986 (OSA Technical Digest) (Washington, DC: Optica Publ. Group, 1986), paper TUI4
  41. Gornwitz M "The South Korean Laser Isotope Separation Experience" https://isis-online.org/isis-reports/detail/the-south-korean-laser-isotope-separation-experience-1/10
  42. Apatin V M et al J. Exp. Theor. Phys. 125 531 (2017); Apatin V M et al Zh. Eksp. Teor. Fiz. 152 627 (2017)
  43. Apatin V M et al Quantum Electron. 48 157 (2018); Apatin V M et al Kvantovaya Elektron. 48 157 (2018)
  44. Apatin V M et al J. Exp. Theor. Phys. 127 244 (2018); Apatin V M et al Zh. Eksp. Teor. Fiz. 154 287 (2018)
  45. Makarov G N, Ogurok N-D D, Petin A N Quantum Electron. 48 667 (2018); Makarov G N, Ogurok N-D D, Petin A N Kvantovaya Elektron. 48 667 (2018)
  46. Lokhman V N et al Laser Phys. 28 105703 (2018)
  47. Lokhman V N et al J. Exp. Theor. Phys. 128 188 (2019); Lokhman V N et al Zh. Eksp. Teor. Fiz. 155 216 (2019)
  48. Petin A N, Makarov G N Quantum Electron. 49 593 (2019); Petin A N, Makarov G N Kvantovaya Elektron. 49 593 (2019)
  49. Apatin V M et al Opt. Spectrosc. 127 61 (2019); Apatin V M et al Opt. Spektrosk. 127 66 (2019)
  50. Makarov G N Phys. Usp. 60 227 (2017); Makarov G N Usp. Fiz. Nauk. 187 241 (2017)
  51. Makarov G N Phys. Usp. 63 245 (2020); Makarov G N Usp. Fiz. Nauk. 190 264 (2020)
  52. Makarov G N, Petin A N Chem. Phys. Lett. 323 345 (2000)
  53. Makarov G N, Petin A N Chem. Phys. 266 125 (2001)
  54. Makarov G N, Petin A N JETP Lett. 111 325 (2020); Makarov G N, Petin A N Pis’ma Zh. Eksp. Teor. Fiz. 111 361 (2020)
  55. Makarov G N, Petin A N J. Exp. Theor. Phys. 132 233 (2021); Makarov G N, Petin A N Zh. Eksp. Teor. Fiz. 159 281 (2021)
  56. Silex Systems Ltd, https://www.silex.com.au
  57. Silex: History, https://www.silex.com.au/about/history#sthash.ayd9oZyC.dpuf
  58. SILEX Process, https://www.chemeurope.com/en/encyclopedia/Silex_Process.html
  59. SILEX Uranium Enrichment, SILEX Annual Report 2020, https://www.silex.com.au/investors/reports/
  60. Lyman J L "Enrichment separative capacity for SILEX" Report LA-UR-05-3786 (Los Alamos, NM: Los Alamos National Laboratory, 2005)
  61. Grasyuk A Z, Letokhov V S, Lobko V V Sov. J. Quantum Electron. 10 1317 (1980); Grasyuk A Z, Letokhov V S, Lobko V V Kvantovaya Elektron. 7 2261 (1980)
  62. Grasiuk A Z, Letokhov V S, Lobko V V Prog. Quantum Electron. 6 245 (1980)
  63. Baranov V Yu et al Sov. J. Quantum Electron. 10 47 (1980); Baranov V Yu et al Kvantovaya Elektron. 7 87 (1980)
  64. Gupta P K, Mehendale S C Hyperfine Interactions 37 243 (1987)
  65. McDowell R S et al Opt. Lett. 4 274 (1979)
  66. Patterson C, McDowell R, Nereson N IEEE J. Quantum Electron. 16 1164 (1980)
  67. Alimpiev S S et al Sov. J. Quantum Electron. 9 329 (1979); Alimpiev S S et al Kvantovaya Elektron. 6 553 (1979)
  68. Aldridge J P et al J. Chem. Phys. 83 34 (1985)
  69. Takami M et al Jpn. J. Appl. Phys. 23 L88 (1984)
  70. Alimpiev S S et al Sov. J. Quantum Electron. 11 375 (1981); Alimpiev S S et al Kvantovaya Elektron. 8 623 (1981)
  71. Takeuchi K et al J. Nucl. Sci. Technol. 26 301 (1989)
  72. Okada Y et al Appl. Phys. B 62 77 (1996)
  73. Laguna G A et al Chem. Phys. Lett. 75 357 (1980)
  74. Krohn B J et al J. Mol. Spectrosc. 132 285 (1988)
  75. Budilova O V et al Opt. Commun. 345 163 (2015)
  76. Baranov I Y, Koptev A V Proc. SPIE 7915 7915F (2011)
  77. Letokhov V S, Chebotayev V P Nonlinear Laser Spectroscopy (Berlin: Springer-Verlag, 1977); Letokhov V S, Chebotayev V P Printsipy Nelinenoi Lazernoi Spektroskopii (Moscow: Nauka, 1975)
  78. Barch W E, Fetterman H R, Schlossberg H R Opt. Commun. 15 358 (1975)
  79. Miller R E J. Phys. Chem. 90 3301 (1986)
  80. Makarov G N Phys. Usp. 53 179 (2010); Makarov G N Usp. Fiz. Nauk 180 185 (2010)
  81. Patterson C W, Krohn B J, Pine A S Opt. Lett. 6 39 (1981)
  82. Alimpiev S S et al Sov. J. Quantum Electron. 15 289 (1985); Alimpiev S S et al Kvantovaya Elektron. 12 434 (1985)
  83. Apatin V M, Lokhman V N, Makarov G N Laser Chem. 5 196208 (1985)
  84. Alimpiev S S et al Sov. J. Quantum Electron. 13 331 (1983); Alimpiev S S et al Kvantovaya Elektron. 10 562 (1983)
  85. McDowell R S, Goldblatt M Inorg. Chem. 10 625 (1971)
  86. McDowell R S et al J. Chem. Phys. 69 1513 (1978)
  87. Apatin V M, Makarov G N Sov. Phys. JETP 57 8 (1983); Apatin V M, Makarov G N Zh. Eksp. Teor. Fiz. 84 15 (1983)
  88. Apatin V M, Lokhman V N, Makarov G N Opt. Spectrosc. 63 452 (1987); Apatin V M, Lokhman V N, Makarov G N Opt. Spektrosk. 63 762 (1987)
  89. Makarov G N Phys. Usp. 48 37 (2005); Makarov G N Usp. Fiz. Nauk. 175 41 (2005)
  90. Makarov G N J. Exp. Theor. Phys. 133 669 (2021); Makarov G N Zh. Eksp. Teor. Fiz. 160 786 (2021)
  91. Makarov G N Quantum Electron. 51 643 (2021); Makarov G N Kvantovaya Elektron. 51 643 (2021)
  92. Makarov G N JETP Lett. 115 660 (2022); Makarov G N Pis’ma Zh. Eksp. Teor. Fiz. 115 703 (2022)
  93. Makarov G N, Petin A N JETP Lett. 112 213 (2020); Makarov G N, Petin A N Pis’ma Zh. Eksp. Teor. Fiz. 112 226 (2020)
  94. Makarov G N, Petin A N Quantum Electron. 50 1036 (2020); Makarov G N, Petin A N Kvantovaya Elektron. 50 1036 (2020)
  95. Makarov G N Phys. Usp. 46 889 (2003); Makarov G N Usp. Fiz. Nauk. 173 913 (2003)
  96. Okada Y et al J. Mol. Struct. 410-411 299 (1997)
  97. Person W B, Kim K C J. Chem. Phys. 69 1764 (1978)
  98. Kim K C et al J. Mol. Spectrosc. 76 322 (1979)
  99. Makarov G N, Petin A N JETP Lett. 115 256 (2022); Makarov G N, Petin A N Pis’ma Zh. Eksp. Teor. Fiz. 115 292 (2022)
  100. Laptev V B, Makarov G N, Petin A N, Ryabov E A J. Exp. Theor. Phys. 135 48 (2022); Laptev V B, Makarov G N, Petin A N, Ryabov E A Zh. Eksp. Teor. Fiz. 162 60 (2022)
  101. Karve R S et al Appl. Phys. B 53 108 (1991)
  102. Kim K, McDowell R S, King W T J. Chem. Phys. 73 36 (1980)
  103. Hildenbrand D J. Chem. Phys. 66 4788 (1977)
  104. Benson S W Chem. Rev. 78 23 (1978)
  105. Anderson J B Molecular Beams And Low Density Gasdynamics (Gasdynamics) Vol. 4 (Ed. P P Wegener) (New York: M. Dekker, 1974)
  106. Zel’dovich Ya B, Raizer Yu P Physics Of Shock Waves And High-Temperature Hydrodynamic Phenomena (New York: Academic Press, 1966); Translated from Russian, Zel’dovich Ya B, Raizer Yu P Fizika Udarnykh Voln I Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii (Moscow: Nauka, 1966)
  107. Stupochenko Ye V, Losev S A, Osipov A I Relaxation In Shock Waves (New York: Springer-Verlag, 1967); Translated from Russian, Stupochenko Ye V, Losev S A, Osipov A I Relaksatsionnye Protsessy V Udarnykh Volnakh (Moscow: Nauka, 1965)
  108. Steinfeld J I et al J. Chem. Phys. 52 5421 (1970)
  109. Bass H E et al J. Chem. Phys. 67 1136 (1977)
  110. Apatin V M et al Opt. Spectrosc. 91 852 (2001); Apatin V M et al Opt. Spektrosk. 91 910 (2001)
  111. Boudon V, Pierre G, Bürger H J. Mol. Spectrosc. 205 304 (2001)
  112. Mahan B H J. Chem. Phys. 46 98 (1967)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions