Electromagnetic levitation method as a containerless experimental technique
L.V. Toropova†a,
D.V. Alexandrov‡a,
A. Kao§b,
M. Rettenmayrc,
P.K. Galenko*c aUral Federal University named after the First President of Russia B N Yeltsin, prosp. Mira 19, Ekaterinburg, 620002, Russian Federation bCentre for Numerical Modelling and Process Analysis, University of Greenwich, London, Old Royal Naval College, Park Row, London, SE10 9LS, UK cOtto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, Löbdergraben 32 , Jena, 07743, Germany
Electromagnetic levitation is a method for containerless high-temperature treatment of metal, semiconductor, and alloy samples. This method is widely used to investigate the thermophysical and thermochemical properties of liquid melts, as well as their crystallization kinetics. An alternating electromagnetic field induces an induction current inside a sample, resulting in a Lorentz force opposing the gravitational force. The Lorentz force lifts the sample, which is heated and melts in a levitation chamber due to the current flowing through it. In this paper, we present an analytical model of the sample levitation process, considering the structure of the electromagnetic levitator coil and options for its optimization for experiments. The kinetics of high-speed solidification of undercooled droplets in the chamber of the electromagnetic levitator is analyzed.
Keywords: electromagnetic levitation, heat-mass transfer, convection, solidification, dendrite, microstructure, levitator PACS:05.70.Fh, 05.70.Ln, 68.70.+w (all) DOI:10.3367/UFNe.2022.02.039159 URL: https://ufn.ru/en/articles/2023/7/e/ 001097028100005 2-s2.0-85164794205 2023PhyU...66..722T Citation: Toropova L V, Alexandrov D V, Kao A, Rettenmayr M, Galenko P K "Electromagnetic levitation method as a containerless experimental technique" Phys. Usp.66 722–733 (2023)
Herlach D M, Matson D M (Eds) Solidification Of Containerless Undercooled Melts (Weinheim: Wiley-VCH, 2010)
Fogel A A Induktsionnyi Metod Uderzhaniya Zhidkikh Metallov Vo Vzveshennom Sostoyanii (Induction Method For Holding Liquid Metals In Suspension,(Books Collection of High-Frequency Thermist, Issue 14)) 4th ed., revised and enlarg. (Leningrad: Mashinostroenie, 1979)
Landau L D, Lifshitz E M Fluid Mechanics (Oxford: Pergamon Press, 1987); Translated from Russian, Landau L D, Lifshitz E M Gidrodinamika (Moscow: Nauka, 1988)
Amaya G E, Patchett J A, Abbaschian G J Grain Refinement in Castings and Welds: Proc. of a Symp., St. Louis, Missouri, October 25-26, 1982 (Eds G J Abbaschian, S A David) (Warrendale, PA: Metallurgical Soc. AIME, 1983)
Schade J, McLean A, Miller W A Undercooled Alloy Phases: Proc. of the 1986 Hume-Rothery Memorial Symp. (Warrendale, PA: Metallurgical Soc. AIME, 1987)
Arpaci E Ph.D. Thesis (Berlin: Freie Univ. Berlin, 1984)
Chernov A A Modern Crystallography (Berlin: Springer-Verlag, 1984); Translated from Russian, Chernov A A Sovremennaya Kristallografiya Vol. 3 (Moscow: Nauka, 1980)
Fedorov O P Protsessy Rosta Kristallov: Kinetika, Formoobrazovanie, Neodnorodnosti (Crystal Growth Processes: Kinetics, Shaping, Inhomogeneities) (Kyiv: Naukova Dumka, 2010)
Flemings M C et al "Levitation observation of dendrite evolution in steel ternary alloy rapid solidification (LODESTARS)" NASA Science Requirement Document LODESTARS-RQMT-0001 (Washington, DC: NASA, 2003)
Matson D M, Hyers R W, Volkmann Th J. Jpn. Soc. Microgravity Appl.27 (4) 238 (2010)
Hyers R W Solidification Of Containerless Undercooled Melts (Eds D M Herlach, D M Matson) (Weinheim: Wiley-VCH, 2012) p. 31
Galenko P K et al Computational Modeling and Simulation of Materials III. Proc. of the 3rd Intern. Conf., Acireale, Sicily, Italy, May 30-June 4, 2004 Pt. B (Eds P Vincenzini, A Lami, F Zerbetto) (Faenza: Techna Group, 2004) p. 565