Issues

 / 

2023

 / 

July

  

Instruments and methods of investigation


Electromagnetic levitation method as a containerless experimental technique

  a,   a, §  b,  c, *  c
a Ural Federal University named after the First President of Russia B N Yeltsin, prosp. Mira 19, Ekaterinburg, 620002, Russian Federation
b Centre for Numerical Modelling and Process Analysis, University of Greenwich, London, Old Royal Naval College, Park Row, London, SE10 9LS, UK
c Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, Löbdergraben 32 , Jena, 07743, Germany

Electromagnetic levitation is a method for containerless high-temperature treatment of metal, semiconductor, and alloy samples. This method is widely used to investigate the thermophysical and thermochemical properties of liquid melts, as well as their crystallization kinetics. An alternating electromagnetic field induces an induction current inside a sample, resulting in a Lorentz force opposing the gravitational force. The Lorentz force lifts the sample, which is heated and melts in a levitation chamber due to the current flowing through it. In this paper, we present an analytical model of the sample levitation process, considering the structure of the electromagnetic levitator coil and options for its optimization for experiments. The kinetics of high-speed solidification of undercooled droplets in the chamber of the electromagnetic levitator is analyzed.

Fulltext pdf (2.9 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.02.039159
Keywords: electromagnetic levitation, heat-mass transfer, convection, solidification, dendrite, microstructure, levitator
PACS: 05.70.Fh, 05.70.Ln, 68.70.+w (all)
DOI: 10.3367/UFNe.2022.02.039159
URL: https://ufn.ru/en/articles/2023/7/e/
001097028100005
2-s2.0-85164794205
2023PhyU...66..722T
Citation: Toropova L V, Alexandrov D V, Kao A, Rettenmayr M, Galenko P K "Electromagnetic levitation method as a containerless experimental technique" Phys. Usp. 66 722–733 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, December 2021, revised: 10th, February 2022, 14th, February 2022

Оригинал: Торопова Л В, Александров Д В, Као Э, Реттенмайр М, Галенко П К «Метод электромагнитной левитации как техника беcконтейнерного эксперимента» УФН 193 770–782 (2023); DOI: 10.3367/UFNr.2022.02.039159

References (78) ↓ Cited by (4) Similar articles (1)

  1. Herlach D, Galenko P, Holland-Moritz D Metastable Solids From Undercooled Melts (Amsterdam: Elsevier, 2007); Translated into Russian, Herlach D, Galenko P, Holland-Moritz D Metastabil’nye Materialy Iz Pereokhlazhdennykh Rasplavov (Moscow-Izhevsk: RKhD, Inst. Komp. Issled., 2010)
  2. Lavernia E J, Srivatsan T S J. Mater. Sci. 45 287 (2010)
  3. Herlach D M, Matson D M (Eds) Solidification Of Containerless Undercooled Melts (Weinheim: Wiley-VCH, 2010)
  4. Fogel A A Induktsionnyi Metod Uderzhaniya Zhidkikh Metallov Vo Vzveshennom Sostoyanii (Induction Method For Holding Liquid Metals In Suspension, (Books Collection of High-Frequency Thermist, Issue 14)) 4th ed., revised and enlarg. (Leningrad: Mashinostroenie, 1979)
  5. King L V Proc. R. Soc. Lond. A 147 212 (1934)
  6. Landau L D, Lifshitz E M Fluid Mechanics (Oxford: Pergamon Press, 1987); Translated from Russian, Landau L D, Lifshitz E M Gidrodinamika (Moscow: Nauka, 1988)
  7. Trinh E H Rev. Sci. Instrum. 56 2059 (1985)
  8. Ohsaka K, Trinh E H, Glicksman M E J. Cryst. Growth 106 191 (1990)
  9. Ansell S et al Phys. Rev. Lett. 78 464 (1997)
  10. Xie W-J, Wei B-B Chinese Phys. Lett. 18 68 (2001)
  11. Jackson J D Classical Electrodynamics 2nd ed. (New York: Wiley, 1975)
  12. Berry M V, Geim A K Eur. J. Phys. 18 307 (1997)
  13. Beaugnon E, Tournier R Nature 349 470 (1991)
  14. Weilert M A et al Phys. Rev. Lett. 77 4840 (1996)
  15. Rulison A J, Rhim W-K Rev. Sci. Instrum. 65 695 (1994)
  16. Felici N-J Rev. Gen. De L’Electricite 75 1145 (1966)
  17. Galenko P K, Jou D Phys. Rep. 818 1 (2019)
  18. Amaya G E, Patchett J A, Abbaschian G J Grain Refinement in Castings and Welds: Proc. of a Symp., St. Louis, Missouri, October 25-26, 1982 (Eds G J Abbaschian, S A David) (Warrendale, PA: Metallurgical Soc. AIME, 1983)
  19. Schade J, McLean A, Miller W A Undercooled Alloy Phases: Proc. of the 1986 Hume-Rothery Memorial Symp. (Warrendale, PA: Metallurgical Soc. AIME, 1987)
  20. Arpaci E Ph.D. Thesis (Berlin: Freie Univ. Berlin, 1984)
  21. Keene B J et al Metall. Trans. B 17 159 (1986)
  22. Brillo J Thermophysical Properties Of Multicomponent Liquid Alloys (Berlin: De Gruyter, 2016)
  23. Egry I et al Adv. Eng. Mater. 5 819 (2003)
  24. Mohr M et al Microgravity Sci. Technol. 31 177 (2019)
  25. Hartmann H et al J. Appl. Phys. 103 073509 (2008)
  26. Alexandrov D V, Galenko P K, Toropova L V Philos. Trans. R. Soc. A 376 20170215 (2018)
  27. Toropova L V et al J. Cryst. Growth 535 125540 (2020)
  28. Alexandrov D V et al Russ. Metall. 2019 787 (2019)
  29. Chernov A A Modern Crystallography (Berlin: Springer-Verlag, 1984); Translated from Russian, Chernov A A Sovremennaya Kristallografiya Vol. 3 (Moscow: Nauka, 1980)
  30. Fedorov O P Protsessy Rosta Kristallov: Kinetika, Formoobrazovanie, Neodnorodnosti (Crystal Growth Processes: Kinetics, Shaping, Inhomogeneities) (Kyiv: Naukova Dumka, 2010)
  31. Royer Z L et al J. Appl. Phys. 113 214901 (2013)
  32. Fromm E, Jehn H Br. J. Appl. Phys. 16 653 (1965)
  33. Fromm E, Jehn H Z. Met. 58 566 (1967)
  34. Sauerland S Ph.D. Thesis (Aachen, Germany: RWTH Aachen, 1993)
  35. Okress E C et al J. Appl. Phys. 23 545 (1952)
  36. Moghimi Z A, Halali M, Nusheh M Metall. Mater. Trans. B 37 997 (2006)
  37. Kermanpur A, Jafari M, Vaghayenegar M J. Mater. Process. Technol. 211 222 (2011)
  38. Funke O et al J. Cryst. Growth 297 211 (2006)
  39. Binder S, Galenko P K, Herlach D M Philos. Mag. Lett. 93 608 (2013)
  40. Reinartz M, Galenko P K https://archive.org/details/droplet-processed-in-eml
  41. Shuleshova O et al Europhys. Lett. 86 36002 (2009)
  42. Shuleshova O et al Int. J. Cast Met. Res. 22 286 (2013)
  43. Greer A L, Assadi H Mater. Sci. Eng. A 226-228 133 (1997)
  44. Hartmann H et al Europhys. Lett. 87 40007 (2009)
  45. Boettinger W J, Aziz M J Acta Metall. 37 3379 (1989)
  46. Chernov A A Sov. Phys. JETP 26 1182 (1968); Chernov A A Zh. Eksp. Teor. Fiz. 53 2090 (1967)
  47. Galenko P K et al Philos. Trans. R. Soc. A 376 20170207 (2018)
  48. Kui H W, Greer A L, Turnbull D Appl. Phys. Lett. 45 615 (1984)
  49. Gillessen F, Herlach D M Mater. Sci. Eng. 97 147 (1988)
  50. Turnbull D J. Appl. Phys. 21 1022 (1950)
  51. Turnbull D Contemp. Phys. 10 473 (1969)
  52. Galenko P K et al Philos. Trans. R. Soc. A 377 20180205 (2019)
  53. Galenko P K et al J. Cryst. Growth 532 125411 (2020)
  54. Kharanzhevskiy E V et al Philos. Trans. R. Soc. A 380 20200321 (2022)
  55. Flemings M C et al "Levitation observation of dendrite evolution in steel ternary alloy rapid solidification (LODESTARS)" NASA Science Requirement Document LODESTARS-RQMT-0001 (Washington, DC: NASA, 2003)
  56. Matson D M, Hyers R W, Volkmann Th J. Jpn. Soc. Microgravity Appl. 27 (4) 238 (2010)
  57. Hyers R W Solidification Of Containerless Undercooled Melts (Eds D M Herlach, D M Matson) (Weinheim: Wiley-VCH, 2012) p. 31
  58. Meister T et al Control Eng. Pract. 11 (2) 117 (2003)
  59. Bojarevich V, Kao A, Pericleous K Solidification Of Containerless Undercooled Melts (Eds D M Herlach, D M Matson) (Weinheim: Wiley-VCH, 2012) p. 321
  60. Galenko P K et al Mater. Sci. Eng. A 375-377 488 (2004)
  61. Alexandrov D V, Galenko P K Phys. Usp. 57 771 (2014); Alexandrov D V, Galenko P K Usp. Fiz. Nauk 184 833 (2014)
  62. Alexandrov D V, Galenko P K Philos. Trans. R. Soc. A 379 20200325 (2021)
  63. Subhedar A, Galenko P K, Varnik F Philos. Trans. R. Soc. A 378 20190540 (2020)
  64. Toropova L V, Alexandrov D V, Galenko P K Math. Meth. Appl. Sci. 44 12139 (2021)
  65. Alexandrov D V et al J. Phys. Condens. Matter 33 443002 (2021)
  66. Kao A et al JOM 72 3123 (2020)
  67. Tong X et al Phys. Rev. E 63 061601 (2001)
  68. Galenko P K et al Solidification And Crystallization (Ed. D M Herlach) (Weinheim: Wiley-VCH, 2004)
  69. Ramirez J C, Beckermann C Acta Mater. 53 1721 (2005)
  70. Jeong J-H, Goldenfeld N, Dantzig J A Phys. Rev. E 64 041602 (2001)
  71. Galenko P K et al Computational Modeling and Simulation of Materials III. Proc. of the 3rd Intern. Conf., Acireale, Sicily, Italy, May 30-June 4, 2004 Pt. B (Eds P Vincenzini, A Lami, F Zerbetto) (Faenza: Techna Group, 2004) p. 565
  72. Galenko P K et al Acta Mater. 55 6834 (2007)
  73. Galenko P K et al Acta Mater. 57 6166 (2009)
  74. Gao J et al J. Cryst. Growth 471 66 (2017)
  75. Kao A https://archive.org/details/droplet-enthalpy-method
  76. Gao J et al Solidification Of Containerless Undercooled Melts (Eds D M Herlach, D M Matson) (Weinheim: Wiley-VCH, 2012)
  77. Gao J et al Acta Mater. 103 184 (2016)
  78. Herlach D M Solidification Of Containerless Undercooled Melts (Eds D M Herlach, D M Matson) (Weinheim: Wiley-VCH, 2012)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions