Issues

 / 

2023

 / 

June

  

Instruments and methods of investigation


Review of unfolding methods

  a, b,  a, b,   a, b,  a,  a
a National Research Nuclear University ‘MEPhI’, Kashirskoe shosse 31, Moscow, 115409, Russian Federation
b Demidov Yaroslavl State University, Sovetskaya st. 14, Yaroslavl, 150000, Russian Federation

Very high accuracy and sensitivity have become attainable by modern instruments for experimental measurements of physical quantities in various scientific fields. Yet it is still impossible to completely eliminate the influence of instrumental effects on the result. The measured values of a physical quantity inevitably differ, sometimes significantly, from the true ones. The question therefore arises of restoring the true distributions from the measured ones, taking the specific features of the experiment and the characteristics of scientific instruments into account. Different approaches are in use based on a mathematical model of the instrument and the formulation of the deconvolution problem. We describe this problem, key ideas and methods for its solution, and features and implementation details using the example of elementary particle physics and space physics experiments.

Fulltext pdf (411 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.05.039189
Keywords: unfolding, deconvolution, spectrum restoration methods, statistical estimates, Bayesian methods, regularization, binning-free methods, machine learning
PACS: 02.50.−r, 02.60.−x, 96.50.S−, 96.50.sb (all)
DOI: 10.3367/UFNe.2022.05.039189
URL: https://ufn.ru/en/articles/2023/6/d/
001112624000004
2-s2.0-85163239655
2023PhyU...66..628B
Citation: Bogomolov Yu V, Alekseev V V, Levanova O A, Mayorov A G, Malakhov V V "Review of unfolding methods" Phys. Usp. 66 628–642 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, January 2022, revised: 7th, April 2022, 2nd, May 2022

Îðèãèíàë: Áîãîìîëîâ Þ Â, Àëåêñååâ Â Â, Ëåâàíîâà Î À, Ìàéîðîâ À Ã, Ìàëàõîâ Â Â «Îáçîð ìåòîäîâ îáðàòíîé ñâ¸ðòêè» ÓÔÍ 193 669–685 (2023); DOI: 10.3367/UFNr.2022.05.039189

References (195) ↓ Cited by (1) Similar articles (4)

  1. Blobel V Proc. of the 1984 CERN School of Computing, Aiguablava, Catalonia, Spain, 9-22 September 1984 (CERN 85-09) (Geneva: CERN, 1985) p. 84-114
  2. Blobel V hep-ex/0208022
  3. Rust B W, Ingersoll D T, Burrus W R A User’s Manual For The FERDO And FERD Unfolding Codes (Oak Ridge, TN: Oak Ridge National Laboratory, 1983)
  4. Engl H W, Hanke M, Neubauer A Regularization Of Inverse Problems (Dordrecht: Kluwer Acad. Publ., 2000)
  5. Cowan G Proc. Conf. on Advanced Statistical Techniques in Particle Physics, IPPP/02/39, Durham 2002 (EdsMR Whalley, L Lyons)
  6. Kaipio J, Somersalo E Statistical And Computational Inverse Problems (New York: Springer, 2005)
  7. Barlow R Proc. PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003
  8. Cowan G Statistical Data Analysis (Oxford: Clarendon Press, 1998)
  9. Blobel V PHYSTAT2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding
  10. Behnke O et al Data Analysis In High Energy Physics: A Practical Guide To Statistical Methods (Weinheim: Wiley-VCH, 2013)
  11. Span’o F EPJ Web Conf. 55 (2013)
  12. Schmitt S arXiv:1611.01927; Schmitt S EPJ Web Conf. 137 11008 (2017)
  13. Hansen P C Discrete Inverse Problems — Insight And Algorithms (Ohio, OH: SIAM, 2010)
  14. Zech G arXiv:1607.06910
  15. Egorov A Yu et al St. Petersburg Polytech. State Univ. J. Phys. Math. 12 (3) (2019)
  16. Adye T arXiv:1105.1160; Adye T Proc. of the PHYSTAT 2011 Workshop, CERN, Geneva, Switzerland, January 2011 (CERN-2011-006)
  17. Brenner L et al arXiv:1910.14654
  18. Klepser S "Reconstruction of Extensive Air Showers and Measurement of the Cosmic Ray Energy Spectrum in the Range of 1-80 PeV at the South Pole" Dissertation Dr. rer. nat. (Berlin: Mathematisch-Naturwissenschaftlichen Fakultat I Humboldt-Univ. zu Berlin, 2008)
  19. Niederhausen H "Measurement of the High Energy Astrophysical Neutrino Flux Using Electron and Tau Neutrinos Observed in Four Years of IceCube Data" PhD Thesis (New York: Stony Brook Univ., 2018)
  20. Hartmann S "On the unfolding of the energy spectrum measured by the HEAT extension at the Pierre Auger Observatory" (Aachen: RWTH Aachen Univ., 2015)
  21. Geenen H "Reconstruction of the Primary Energy Spectrum from Fluorescence Telescope Data of the Pierre Auger Observatory" Dissertation (Wuppertal: Univ. of Wuppertal, 2007)
  22. Zech G, Aslan B Proc. PHYSTAT 2003, Stanford, USA, September 8-11, 2003
  23. Dembinski H P, Roth M Nucl. Instrum. Meth. Phys. Res. A 729 410 (2013)
  24. Andreassen A et al Phys. Rev. Lett. 124 182001 (2020); Andreassen A et al arXiv:1911.09107
  25. Arratia M et al JINST 17 P01024 (2022); Arratia M et al arXiv:2109.13243
  26. Rosenblatt M Ann. Math. Statist. 27 832 (1956)
  27. Chentsov N N Dokl. Akad. Nauk SSSR 147 45 (1962)
  28. Gu C, Qui C Ann. Statist. 21 (1) 217 (1993)
  29. Loftsgaarden D O et al Ann. Math. Stat. 36 1049 (1965)
  30. Aizerman M A, Braverman E M, Rozonoer L I Metod Potentsial’nykh Funktsii V Teorii Obucheniya Mashin (Method Of Potential Functions In Machine Learning Theory) (Moscow: Nauka, 1970)
  31. Kuusela M "Statistical Issues in Unfolding Methods for High Energy Physics" Master Thesis (Espoo: Aalto Univ., 2012)
  32. Vischia P arXiv:2009.02913
  33. MicroBooNE Collab. "MicroBooNE low-energy excess signal prediction from unfolding MiniBooNE Monte-Carlo and data" MICROBOONE-NOTE-1043-PUB MicroBooNE docdb-15587 (2018)
  34. Bohm G, Zech G Introduction To Statistics And Data Analysis For Physicists (Hamburg: Verlag Deutsches Elektronen-Synchrotron, 2017)
  35. Kuusela M, Stark P B arXiv:1512.00905
  36. Höcker A, Kartvelishvili V Nucl. Instrum. Meth. Phys. Res. A 372 469 (1996)
  37. Schmitt S JINST 7 (10) T10003 (10)
  38. D’Agostini G Nucl. Instrum. Meth. Phys. Res. A 362 487 (1995)
  39. Bierwagen K Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, PHYSTAT 2011, CERN, Geneva, Switzerland, 17-20 January 2011, CERN-2011-006 (Eds H B Prosper, L Lyons)
  40. D’Agostini G arXiv:1010.0632
  41. Kuusela M, Panaretos V M Ann. Appl. Stat. 9 1671 (2015)
  42. Baroň P Acta Phys. Polon. B 51 1241 (2020)
  43. Choudalakis G arXiv:1201.4612
  44. Kartvelishvili V Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, (PHYSTAT 2011), CERN, Geneva, Switzerland, 17-20 January 2011, CERN-2011-006 (Eds H B Prosper, L Lyons)
  45. Richardson W H J. Opt. Soc. Am. 62 (1) 55 (1972)
  46. Lucy L B Astron. J. 79 745 (1974)
  47. Zech G Nucl. Instrum. Meth. Phys. Res. A 716 1 (2013)
  48. Licciardi M, Quilain B arXiv:2101.01096
  49. Ofécial website of ROOT package, https://root.cern.ch/
  50. Ofécial website of RooUnfold package, http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
  51. Lavička R "Ultra-Peripheral Collisions at ALICE" Dissertation Thesis, CERN-THESIS-2021-111 (Prague: Czech Technical Univ. in Prague, 2021)
  52. Tikhonov A N Sov. Math. Dokl. 4 1035 (1963); Tikhonov A N Dokl. Akad. Nauk SSSR 151 501 (1963)
  53. Adye T Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, PHYSTAT 2011, CERN, Geneva, Switzerland, 17-20 January 2011, CERN-2011-006 (Eds H B Prosper, L Lyons) p. 313
  54. Schmelling M Nucl. Instrum. Meth. Phys. Res. A 340 400 (1994)
  55. Narayan R, Nityananda R Annu. Rev. Astron. Astrophys. 24 127 (1986)
  56. Dembinski H P, Roth M Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (PHYSTAT 2011), CERN, Geneva, Switzerland, 17-20 January 2011, CERN-2011-006 (Eds H B Prosper, L Lyons) p. 285
  57. Green P J, Silverman B W Nonparametric Regression And Generalized Linear Models (London: Chapman and Hall, 1994)
  58. Lee T C M Comput. Statistics Data Analysis 42 139 (2003)
  59. Volobouev I arXiv:1408.6500
  60. Veklerov E, Llacer J IEEE Trans. Med. Imaging. 6 (4) 313 (1987)
  61. Blobel V OPAL Technical Note TN361 (1996)
  62. Press W H et al Numerical Recipes In FORTRAN: The Art Of Scientific Computing 2nd ed. (Cambridge: Cambridge Univ. Press, 1992)
  63. Takiya C et al Nucl. Instrum. Meth. Phys. Res. A 523 186 (2004)
  64. Tang W et al JINST 12 P10002 (2017)
  65. Malaescu B arXiv:0907.3791; Malaescu B LAL 09-107
  66. Malaescu B arXiv:1106.3107; Malaescu B CERN-PH-EP-2011-111
  67. Malaescu B Lectures for PhD students, Geneva, 2018
  68. Lyons L Proc. Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, (PHYSTAT 2011), CERN, Geneva, Switzerland, 17-20 January 2011, CERN-2011-006.225 (Eds H B Prosper, L Lyons) p. 225
  69. Anykeyev V, Spiridonov A, Zhigunov V Nucl. Instrum. Meth. Phys. Res. A 322 (1992)
  70. "Statistical Methods in Particle Physics", Heidelberg Univ., WS 2020/21, https://www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/
  71. Stahlman J M Ph.D. Thesis at Publicly Accessible Penn Dissertations 1455 (2014)
  72. Adriani O et al (CALET Collab.) Phys. Rev. Lett. 125 251102 (2020); Adriani O et al (CALET Collab.) arXiv:2012.10319
  73. van Cittert P H Z. Phys. 69 298 (1931)
  74. Burger H C, van Cittert P H Z. Phys. 79 722 (1932)
  75. Gold R Report ANL-6984 (Lemont, IL: Argonne National Laboratory, 1964)
  76. Ter-Antonyan S V Astropart. Phys. 28 321 (2007); Ter-Antonyan S V arXiv:0706.4087
  77. Morháč M Nucl. Instrum. Meth. Phys. Res. A 559 119 (2006)
  78. Eichstädt S et al Metrologia 50 107 (2013)
  79. Simon A et al J. High Energy Phys. 2021 146 (2021)
  80. Li M et al Res. Astron. Astrophys. 19 145 (2019)
  81. Doroshenko J J et al Nucl. Technol. 33 296 (1977)
  82. Sanna R S Technical Report EML-394, Environmental Measurements Laboratory (1981)
  83. McElroy W W et al Technical Report AFWL-TR-67-41, US Air Force Weapons Laboratory (1967)
  84. Routti J T, Sandberg J V Radiat. Prot. Dosim. 10 (1-4) 103 (1985)
  85. Routti J T, Goldhagen P Technical Report EML-595, Environmental Measurements Laboratory (1998)
  86. Chen Y H et al Sci. China Phys. Mech. Astron. 57 1885 (2014)
  87. Boszon A S "Measurements of Hadronic tt Differential Cross Sections with ATLAS and Unfolding with Gaussian Processes" PhD Thesis (London: Univ. of London, 2020)
  88. Koch L JINST 14 P09013 (2019); Koch L arXiv:1903.06568
  89. Held A Analysis Syst. Typical Workshop Report, New York, June 19-20, 2019; Held A http://
  90. D’Agostini G slides for report at Alliance Workshop on Unfolding and Data Correction, Hamburg, Germany, 27-28 May 2010; D’Agostini G https://www.roma1.infn.it/ dagos/unf2_hh.pdf
  91. Datta K, Kar D, Roy D, arXiv:1806.00433
  92. Gagunashvili N D arXiv:1004.2006
  93. Glazov A arXiv:1712.01814; Glazov A DESY-17-214
  94. Isildak B arXiv:2001.10814
  95. Goodfellow I J arXiv:1406.2661
  96. Plehn T arXiv:2008.08558
  97. ARU project website, https://aru.hepforge.org/
  98. de Boor C A Practical Guide To Splines (New York: Springer-Verlag, 1978)
  99. Komiske P T, Metodiev E M, Thaler J J. High Energy Phys. 2019 (01) 121 (2019); Komiske P T, Metodiev E M, Thaler J arXiv:1810.05165
  100. Zaheer M et al Advances in Neural Inf. Proc. Systems 30: Annual Conf. on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA
  101. Cranmer K, Pavez J,Louppe G arXiv:1506.02169
  102. Bothmann E, Del Debbio L J. High Energy Phys. 2019 33 (2019)
  103. Brenner L et al Int. J. Mod. Phys. A 35 2050145 (2020)
  104. Milke N et al Nucl. Instrum. Meth. Phys. Res. 697 133 (2013)
  105. Bourbeau J, Hampel-Arias Z J. Open Source Software 3 (26) 741 (2018)
  106. Komiske P T, Metodiev E M "EnergyFlow package, 2019" https://energyflow.network/
  107. Komiske P T, Metodiev E M "OmniFold package, 2021" https://github.com/pkomiske/OmniFold
  108. Lowry K A, Johnson T L Health Phys. 47 587 (1984)
  109. De Sousa Lacerda M A et al Proc. of the 18th Intern. Symp. on Solid State Dosimetry, Oaxaca, Mexico, 24-28 Sep. 2018 p. 2018
  110. Sweezy J, Hertel N, Veinot K Nucl. Instrum. Meth. Phys. Res. A 476 263 (2002)
  111. Pivk M BABAR-THESIS-03/012 (2003)
  112. Pivk M, Le Diberder F R Nucl. Instrum. Meth. Phys. Res. A 555 356 (2005)
  113. Aaij R et al J. High Energy Phys. 2022 (01) 065 (2022)
  114. Anderlini L arXiv:2110.07925
  115. Mathad A et al JINST 16 (06) P06016 (06)
  116. Artamonov A V "Issledovanie rozhdeniya Υ(nS) mezonov v pp-vzaimodeistviyakh pri √s =ˆ 7 i 8 TeV v eksperimente LHCb (Investigation of the production of Υ(nS)† mesons in pp interactions at √s 7 and 8 TeV in the LHCb experiments)" Thesis for Candidate of Phys.-Math. Sciences (Protvino: Logunov Institute for High Energy Physics, National Research Center Kurchatov Institute, 2019)
  117. Andreev V et al (H1 Collab.) arXiv:2108.12376; Andreev V et al (H1 Collab.) DESY 21-130
  118. Wagner W Mod. Phys. Lett. A 25 1297 (2010)
  119. Gresham M I, Kim I-W, Zurek K M Phys. Rev. D 83 114027 (2011)
  120. Abazov V M et al (D0 Collab.) Phys. Rev. Lett. 101 191801 (2008)
  121. Aaltonen T et al (CDF Collab., D0 Collab.) Phys. Rev. D 97 112007 (2018)
  122. Prokhorova D S, Andronov E V J. Phys. Conf. Ser. 1690 012134 (2020)
  123. Evans L R, Bryant P JINST 3 S08001 (2008)
  124. Kohn F Ph.D. Thesis (Göttingen, 2012)
  125. ATLAS Collab. Eur. Phys. J. C 72 2039 (2012)
  126. Chatrchyan S et al (CMS Collab.) Phys. Lett. B 709 28 (2012)
  127. Savitskyi M "Measurements of differential cross sections for tt production in proton-proton collisions at √s = 13 TeV using events containing two leptons with the CMS experiment" Dissertation (Hamburg: Univ. of Hamburg, 2018)
  128. Biondi S Eur. Phys. J. Conf. 137 11002 (2017)
  129. Sirunyan A M et al (CMS Collab.) J. High Energy Phys. 2021 (03) 257 (2021)
  130. Wagner-Kuhr J arXiv:1606.02936
  131. Komiske P, McCormack W P, Nachman W Phys. Rev. D 104 076027 (2021); Komiske P, McCormack W P, Nachman W arXiv:2105.09923
  132. Bellagente A et al SciPost Phys. 9 074 (2020)
  133. Herrmann T "Study of Different Unfolding Methods of Kinematic Distributions of the WZ→WZ Scattering with Data and Simulation of the ATLAS Detector at the LHC" Dissertation (Dresden: Technical Univ. of Dresden, 2017)
  134. Agapov N N et al Phys. Usp. 59 383 (2016); Agapov N N et al Usp. Fiz. Nauk 186 405 (2016)
  135. Kolesnikov V et al Phys. Part. Nucl. Lett. 16 6 (2019)
  136. Butenko A V et al Phys. Usp. 66 195 (2023); Butenko A V et al Usp. Fiz. Nauk 193 206 (2023)
  137. Drnoyan J et al report at The Conf. "RFBR Grants for NICA", Evaluation of prospects for hypernuclei studies with MPD at NICA-JINR, Dubna, Russia, 20-23 October 2020
  138. Geraksiev N report at Workshop on analysis techniques for centrality determination and êow measurements at FAIR and NICA (FANI-2020) Anisotropic flow of Λ-hyperons in MPD@NICA - NRNU "MEPhI", Moscow, 24-28 August 2020; Geraksiev N http://indico.oris.mephi.ru/event/181/session/1/contribution/16/
  139. Abe K et al Astrophys. J. 822 65 (2016)
  140. Adriani O et al Phys. Rev. Lett. 111 081112 (2013)
  141. Adriani O et al Phys. Rev. Lett. 105 121101 (2010)
  142. Adriani O et al Astrophys. J. 810 142 (2015); Adriani O et al arXiv:1512.01079
  143. Adriani O et al Science 332 69 (2011)
  144. Casaus J J. Phys. Conf. Ser. 631 012046 (2015)
  145. Ghelfi A Cosmic Rays & their Interstellar Medium Environment (CRISM-2014), June 2014, Montpellier, France, Proc. of Science, CRISM2014 p. 013
  146. Aguilar M et al Phys. Rev. Lett. 126 041104 (2021)
  147. Wang Z "Measurement of Cosmic Ray Proton+Helium Flux with the DAMPE Experiment" Dissertation (Gran Sasso Science Institute, 2020)
  148. Verzi V, Ivanov D, Tsunesada Y Prog. Theor. Exp. Phys. 201 7 (12)
  149. Ivanov D "Energy spectrum measured by the telescope array surface detector" Thesis For Doctor Of Philosophy Graduate Program In Physics And Astronomy (New Brunswick, NJ: Rutgers, The State Univ. of New Jersey, 2012)
  150. Curtef V "A new unfolding method for the MAGIC telescope" Thesis for the Doctor of Physics (Dortmund: Univ. of Dortmund, 2008)
  151. Albert J et al Nucl. Instrum. Meth. Phys. Res. A 583 494 (2007); Albert J et al arXiv:0707.2453
  152. Oberndörfer M "Bayesian Unfolding of H.E.S.S. energy spectra" Masterarbeit aus der Physik (Erlangen-Nürnberg: Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Univ., 2017)
  153. Fei Li et al Results Phys. 13 102211 (2019)
  154. Loparco F, Mazziotta MN arXiv:0912.3695
  155. Mazziotta M N arXiv:0912.1236
  156. Abdo A A et al Astrophys. J. Suppl. Ser. 187 (2) (2010)
  157. Mazziotta M N arXiv:0907.0638
  158. Sandroos J arXiv:1909.07174; Sandroos J PoS-ICRC2019-999
  159. Abbasi R Phys. Rev. D 83 012001 (2011)
  160. Schüssler F on behalf of the ANTARES Collab. EPJ Web Conf. 121 05002 (2016)
  161. Trzebinski M, Staszewski R, Chwastowski J ISRN High Energy Physics 2012 491460 (2012)
  162. Wang Z et al Nucl. Technol. 168 610 (2009)
  163. Reginatto M, Goldhagen P, Neumann S Nucl. Instrum. Meth. Phys. Res. A 476 242 (2002)
  164. An F P et al (Daya Bay Collab.) Chinese Phys. C 45 (7) 073001 (2021); An F P et al (Daya Bay Collab.) arXiv:2102.04614
  165. Zhu N M IEEE T Nucl. Sci. 66 2265 (2019)
  166. Peterson J H J. Instrum. 16 C09032 (2021)
  167. Aartsen M G J. Instrum. 9 P03009 (2014)
  168. Zinchenko A, Chabratova G Nucl. Instrum. Meth. Phys. Res. A 502 (2-3) 778 (2003)
  169. Blobel V, Kleinwort C hep-ex/0208021; Blobel V, Kleinwort C DESY 02-077
  170. Reginatto M Radiat. Meas. 45 1323 (2010)
  171. Dommert M Current Directions Biomed. Eng. 3 (2) 83 (2017)
  172. Zimbal A ECPD 2015 ë 1st EPS Conf. on Plasma Diagnostics - Frascati - Proc. of Science (ECPD2015)
  173. Venanzoni G AIP Conf. Proc. 1182 665 (2009)
  174. Ablikim M Chinese Phys. C 37 063001 (2013)
  175. Samanta S Nucl. Phys. A 1005 121896 (2021); Samanta S arXiv:2002.12235
  176. Aguilar M et al (AMS Collab.) Phys. Rev. Lett. 114 171103 (2015)
  177. Green D M PhD Thesis (College Park, MD: Univ. of Maryland, 2016)
  178. Adriani O et al Astrophys. J. 791 93 (2014)
  179. An Q et al Sci. Adv. 5 eaax3793 (2019)
  180. Adriani O et al Phys. Rev. Lett. 126 241101 (2021)
  181. Aab A et al Phys. Rev. D 102 062005 (2020)
  182. Zanin R "Observation of the Crab pulsar wind nebula and microquazar candidates with MAGIC" Ph.D. Dissertation (Bellaterra (Barcelona), Spain: Univ. Autonoma de Barcelona, 2011)
  183. Albert J et al Astrophys. J. 663 125 (2007)
  184. Aartsen M G et al (IceCube Collab.) Eur. Phys. J. C 77 (10) 692 (2017)
  185. Aguilar J A et al (IceCube Collab.) Eur. Phys. J. Part. Fields 75 (3) 116 (2015)
  186. Richard E et al Phys. Rev. D 94 052001 (2016)
  187. "Statistical methods 2021", Institute of Particle and Nuclear Physics, https://ipnp.cz/?page id=4280
  188. Logashenko I B Metody Analiza Eksperimental’nykh Dannykh. Elektronnyi Lektsionnyi Kurs (Methods Of Analysis Of Experimental Data. Electronic Lecture Course) (Novosibirsk: NGU, 2013)
  189. Logashenko I B, Eidel’man S I Phys. Usp. 61 480 (2018); Logashenko I B, Eidel’man S I Usp. Fiz. Nauk 188 540 (2018)
  190. Alekseev V V et al J. Phys. Conf. Ser. 1390 012071 (2019)
  191. Baron P arXiv:2001.05877
  192. Wei X et al IEEE Trans. Signal Process. 70 2962 (2022); Wei X et al arXiv:2107.02848
  193. Pop F Adv. High Energy Phys. 2014 507690 (2014)
  194. Kuusela M PhyStat-ν 2019, CERN, Geneva, Switzerland
  195. Kuusela M, CP3 Remote Seminar Report (Univ. Catholique de Louvain), July 1, 2020, https://agenda.irmp.ucl.ac.be/event/4000/

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions