Issues

 / 

2023

 / 

May

  

Instruments and methods of investigation


Isotopically selective photoionization for the production of the medical radioisotope 177Lu

, , , , ,  ,
National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

We present results on isotopically selective lutetium photoionization using dye lasers pumped by copper vapor lasers as applied to the problem of obtaining the 177Lu radionuclide for medical applications.

Fulltext pdf (801 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.12.039140
Keywords: selective photoionization, laser isotope separation, 177Lu
PACS: 28.60.+s, 42.62.−b, 87.56.−v (all)
DOI: 10.3367/UFNe.2021.12.039140
URL: https://ufn.ru/en/articles/2023/5/d/
001112604700004
2-s2.0-85182895214
2023PhyU...66..518D
Citation: Dyachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Firsov V A, Tsvetkov G O, Panchenko V Ya "Isotopically selective photoionization for the production of the medical radioisotope 177Lu" Phys. Usp. 66 518–533 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, November 2021, revised: 17th, December 2021, 21st, December 2021

Оригинал: Дьячков А Б, Горкунов А А, Лабозин А В, Миронов С М, Фирсов В А, Цветков Г О, Панченко В Я «Изотопически селективная фотоионизация для получения медицинского радиоизотопа 177Lu» УФН 193 554–570 (2023); DOI: 10.3367/UFNr.2021.12.039140

References (50) ↓ Similar articles (9)

  1. NuDat 3.0. National Nuclear Data Center. Brookhaven National Laboratory, https://www.nndc.bnl.gov/nudat2/
  2. Toporov Yu G et al Report on the 1st Research Coordination Meeting on "Development of Therapeutic Radiopharmaceuticals Based on 177Lu for Radionuclide Therapy", 4-8 December 2006, IAEA Headquarters, Vienna, Austria (Vienna: IAEA, 2006) p. 152
  3. Banerjee S, Pillai M R A, Knapp F F Chem. Rev. 115 2934 (2015)
  4. Pillai M R A et al Appl. Radiat. Isotop. 59 109 (2003)
  5. Park H et al J. Nucl. Sci. Technol. Suppl. 45 (sup6) 111 (2008)
  6. Bhardwaj R et al Sci. Rep. 7 44242 (2017)
  7. Andreev B M et al Izotopy: Svoistva, Poluchenie, Primenenie (Isotopes: Properties, Production, Application) Vol. 1 (Ed. V Yu Baranov) (Moscow: Fizmatlit, 2005) p. 357
  8. Letokhov V S Sov. Phys. Usp. 29 70 (1986); Letokhov V S Usp. Fiz. Nauk 148 123 (1986)
  9. Karlov N V et al Sov. Phys. Usp. 22 220 (1979); Karlov N V et al Usp. Fiz. Nauk 127 593 (1979)
  10. Letokhov V S, Moore C B Sov. J. Quantum Electron. 6 129 (1976); Letokhov V S, Moore C B Kvantovaya Elektron. 3 248 (1976)
  11. Tkachov A N, Yakovlenko S I Quantum Electron. 26 839 (1996); Tkachov A N, Yakovlenko S I Kvantovaya Elektron. 23 860 (1996)
  12. D’yachkov A B et al Quantum Electron. 42 953 (2012); D’yachkov A B et al Kvantovaya Elektron. 42 953 (2012)
  13. D’yachkov A B et al Appl. Phys. B 121 425 (2015)
  14. Henkelmann R, Hey A, Buck O Workshop "Physics for Health in Europe" (Geneva: CERN, 2010)
  15. Andreev O I et al Quantum Electron. 36 84 (2006); Andreev O I et al Kvantovaya Elektron. 36 84 (2006)
  16. Gadelshin V et al Hiperfine Interact. 238 28 (2017)
  17. Gadelshin V et al Radiochim. Acta 107 653 (2019)
  18. Fedosseev V N, Kudryavtsev Yu, Mishin V I Phys. Scr. 85 058104 (2012)
  19. Wendt K et al Fresenius J. Anal. Chem. 364 471 (1999)
  20. Littman M G Appl. Opt. 23 4465 (1984)
  21. Grigoriev I S et al Proc. SPIE 5121 411 (2003)
  22. D’yachkov A B et al Instrum. Exp. Tech. 61 548 (2018); D’yachkov A B et al Prib. Tekh. Eksp. (4) 81 (2018)
  23. Ralchenko Y, Kramida A E, Reader J "NIST ASD Team NIST Atomic Spectra Database (Version 5)" https://www.nist.gov/pml/atomic-spectra-database
  24. Meggers W F, Corliss C H, Scribner B F Tables Of Spectral-Line Intensities Arranged By Elements ((NBS Monograph 145, Pt. 1)) (Washington, DC: National Bureau of Standards, 1975)
  25. Smith P L et al "Atomic spectral line database from CD-ROM23 of R.L. Kurucz (2017)" https://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html
  26. Suryanarayana M V J. Opt. Soc. Am. B 38 353 (2021)
  27. Suryanarayana M V, Sankari M Sci. Rep. 11 18292 (2021)
  28. Suryanarayana M V, Sankari M J. Opt. Soc. Am. B 38 3331 (2021)
  29. Rath A D, Biswal D, Rundu S J. Quant. Spectrosc. Radiat. Transf. 270 107696 (2021)
  30. Woodgate G K Elementary Atomic Structure (Oxford: Oxford Univ. Press, 1989)
  31. D’yachkov A B et al Opt. Spectrosc. 125 839 (2018); D’yachkov A B et al Opt. Spektrosk. 126 103 (2019)
  32. D’yachkov A B et al Opt. Spectrosc. 128 6 (2020); D’yachkov A B et al Opt. Spektrosk. 128 10 (2020)
  33. Nunnemann A, Zimmermann D, Zimmermann P Z. Phys. A 290 123 (1979)
  34. Zimmermann D et al Z. Phys. A 295 307 (1980)
  35. Georg U et al Eur. Phys. J. A 3 225 (1998)
  36. Petersen F R, Shugart H A Phys. Rev. 126 252 (1962)
  37. Brenner T et al Nucl. Phys. A 440 407 (1985)
  38. Heilig K, Steudel A Atom. Data Nucl. Data Tabl. 14 613 (1974)
  39. Witte S et al Eur. Phys. J. D 20 159 (2002)
  40. Jin W G et al Phys. Rev. A 49 762 (1994)
  41. Persson J R Atom. Data Nucl. Data Tabl. 99 62 (2013)
  42. Fedchak J A et al Astrophys. J. 542 1109 (2000)
  43. D’yachkov A B et al Opt. Spectrosc. 128 289 (2020); D’yachkov A B et al Opt. Spektrosk. 128 301 (2020)
  44. Axner O et al Spectrochim. Acta B 59 1 (2004)
  45. Dyachkov A B et al Quantum Electron. 48 1043 (2018); Dyachkov A B et al Kvantovaya Elektron. 48 1043 (2018)
  46. Babichev A P et al Quantum Electron. 35 879 (2005); Babichev A P et al Kvantovaya Elektron. 35 879 (2005)
  47. Ageeva I V et al Quantum Electron. 49 832 (2019); Ageeva I V et al Kvantovaya Elektron. 49 832 (2019)
  48. D’yachkov A B et al Quantum Electron. 51 317 (2021); D’yachkov A B et al Kvantovaya Elektron. 51 317 (2021)
  49. D’yachkov A B et al Quantum Electron. 46 574 (2016); D’yachkov A B et al Kvantovaya Elektron. 46 574 (2016)
  50. Kuhnert A, Nunnemann A, Zimmermann D J. Phys. B 16 4299 (1983)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions