Issues

 / 

2023

 / 

December

  

Reviews of topical problems


Photonics approaches to the implementation of neuromorphic computing

, , , , , , ,  
Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Physical limitations on the operation speed of electronic devices has motivated the search for alternative ways to process information. The past few years have seen the development of neuromorphic photonics — a branch of photonics where the physics of optical and optoelectronic devices is combined with mathematical algorithms of artificial neural networks. Such a symbiosis allows certain classes of computation prob„lems, including some involving artificial intelligence, to be solved with greater speed and higher energy efficiency than can be reached with electronic devices based on the von Neumann architecture. We review optical analog computing, photonic neural networks, and methods of matrix multiplication by optical means, and discuss the advantages and disadvantages of existing approaches.

Fulltext pdf (1.6 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.07.039505
Keywords: neuromorphic photonics, artificial intelligence, machine learning, reservoir computing, matrix—vector multiplication, photonic computing, neural networks, optical coprocessor, photonic tensor computing, optical Fourier transform, integrated photonics, Mach—Zehnder interferometer, ring resonators, waveguides
PACS: 07.05.Mh, 42.79.Hp (all)
DOI: 10.3367/UFNe.2023.07.039505
URL: https://ufn.ru/en/articles/2023/12/b/
001172931200006
2-s2.0-85183055912
2023PhyU...66.1211M
Citation: Musorin A I, Shorokhov A S, Chezhegov A A, Baluyan T G, Safronov K R, Chetvertukhin A V, Grunin A A, Fedyanin A A "Photonics approaches to the implementation of neuromorphic computing" Phys. Usp. 66 1211–1223 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, November 2022, revised: 4th, July 2023, 5th, July 2023

Оригинал: Мусорин А И, Шорохов А С, Чежегов А А, Балуян Т Г, Сафронов К Р, Четвертухин А В, Грунин А А, Федянин А А «Подходы фотоники для реализации нейроморфных вычислений» УФН 193 1284–1297 (2023); DOI: 10.3367/UFNr.2023.07.039505

References (53) ↓ Cited by (4) Similar articles (8)

  1. Xu R Opt. Laser Technol. 136 106787 (2021)
  2. Marković D Nat. Rev. Phys. 2 499 (2020)
  3. Xu M Adv. Funct. Mater. 30 2003419 (2020)
  4. Zhang J Adv. Intell. Syst. 2 1900136 (2020)
  5. Sunny F P ACM J. Emerg. Technol. Comput. Syst. 17 (4) 61 (2021)
  6. Yao K, Unni R, Zheng Y Nanophotonics 8 339 (2019)
  7. Ferreira de Lima Th Nanophotonics 6 577 (2017)
  8. Goodman J W, Dias A R, Woody L M Opt. Lett. 2 1 (1978)
  9. Zuo Y Optica 6 1132 (2019)
  10. Liu J PhotoniX 2 5 (2021)
  11. Shastri B J Nat. Photon. 15 102 (2021)
  12. Silicon Photonics. From Technologies to Markets. Market and Technology Report 2021. Yole Group, https://s3.i-micronews.com/uploads/2021/05/YINTR21175-Silicon-Photonics-2021-Sample.pdf
  13. Silicon Photonics 2022. Market and Technology Trends. Yole Group, https://www.yolegroup.com/product/report/silicon-photonics-2022/
  14. GlobalFoundries Announces Next Generation in Silicon Photonics Solutions and Collaborates with Industry Leaders to Advance a New Era of More in the Data Center. March 7, 2022. GlobalFoundries Press Releases, https://gf.com/gf-press-release/globalfoundries-announces-next-generation-silicon-photonics-solutions-and/
  15. Huang C Adv. Phys. X 7 1981155 (2022)
  16. Kirtas M et al "Early detection of DDoS attacks using photonic neural networks" 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP) (Piscataway, NJ: IEEE, 2022)
  17. Clements W R Optica 3 1460 (2016)
  18. Al-Qadasi M A APL Photon. 7 020902 (2022)
  19. Shen Y Nat. Photon. 11 441 (2017)
  20. Bandyopadhyay S, Hamerly R, Englund D Optica 8 1247 (2021)
  21. Envise. Lightmatter, https://lightmatter.co/products/envise/
  22. "High-efficiency multi-slot waveguide nano-opto-electromechanical phase modulator", Grant US-11281068-B2, https://app.dimensions.ai/details/patent/US-10884313-B2
  23. Feng Y Opt. Express 28 38206 (2020)
  24. Baghdadi R et al Opt. Express 29 19113 (2021)
  25. Jacob B Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, USA, June 18-22, 2018 (Piscataway, NJ: IEEE, 2018) p. 2704
  26. Machupalli R, Hossain M, Mandal M Microprocess. Microsyst. 89 104441 (2022)
  27. Lightelligence, https://www.lightelligence.ai
  28. Lightelligence. PACE: Photonic Arithmetic Computing Engine, https://www.lightelligence.ai/index.php/product/index/2.html
  29. Qu Y Sci. Bull. 65 1177 (2020)
  30. Chao C-Y, Fung W, Guo L J IEEE J. Sel. Top. Quantum Electron. 12 134 (2006)
  31. Feldmann J Nature 589 52 (2021)
  32. Burr G W IEEE J. Emerg. Sel. Top. Circuits Syst. 6 146 (2016)
  33. Wu C Nat. Commun. 12 96 (2021)
  34. Prabhu M Optica 7 551 (2020)
  35. Lucas A Front. Phys. 2 5 (2014)
  36. Akhmanov S A, Nikitin S Yu Fizicheskaya Optika (Physical Optics) 2nd ed. ((Moscow: Izd. Mosk. Univ., 2004)
  37. Goodman J W Introduction To Fourier Optics (Englewood, CO: Roberts and Co., 2005)
  38. Lin X Science 361 1004 (2018)
  39. Yann LeCun’s Home Page, http://yann.lecun.com/exdb/mnist/
  40. Qian C Light Sci. Appl. 9 59 (2020)
  41. Luo Y Light Sci. Appl. 8 112 (2019)
  42. Mengu D IEEE J. Sel. Top. Quantum Electron. 26 3700114 (2020)
  43. Papers with Code. Fashion-MNIST, https://paperswithcode.com/dataset/fashion-mnist
  44. Papers with Code. Residual Network, https://paperswithcode.com/method/resnet
  45. He K "Deep residual learning for image recognition" Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, Las Vegas, NV, USA, 27-30 June 2016 (Piscataway, NJ: IEEE, 2016) p. 770
  46. Kulce O Light Sci. Appl. 10 25 (2021)
  47. Luo X Light Sci. Appl. 11 158 (2022)
  48. Miscuglio M Optica 7 1812 (2020)
  49. The CIFAR-10 dataset, https://www.cs.toronto.edu/~kriz/cifar.html
  50. Colburn S Appl. Opt. 58 3179 (2019)
  51. Krizhevsky A, Sutskever I, Hinton G E Advances In Neural Information Processing Systems Vol. 25 (Eds F Pereira et al) (Red Hook, NY: Curran Associates Inc., 2012) p. 1097
  52. Kaggle. Datasets. Cats-vs-Dogs: image dataset for binary classification, https://www.kaggle.com/datasets/shaunthesheep/microsoft-catsvsdogs-dataset
  53. Yan T Phys. Rev. Lett. 123 023901 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions