Issues

 / 

2023

 / 

November

  

Methodological notes


Machine learning for the search for topological spin textures

  a,   a, b, §  a, b
a Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
b Far Eastern Federal University, Sukhanova str. 8, Vladivostok, 690950, Russian Federation

We present an alternative method for numerical modeling of topological magnetic textures using a neural network algorithm. We discuss a model of localized spins where topological magnetic textures are stabilized due to a delicate interplay between the symmetric exchange interaction, and the antisymmetric interaction caused by exchange—relativistic effects, as well as a model of an itinerant magnet where noncoplanar spin configurations emerge when taking multispin interactions into account. The viability of the proposed method is illustrated with the formation of lattices of skyrmions and antiskyrmions, magnetic hedgehogs, and skyrmion tubes in two-dimensional and three-dimensional magnetic systems.

Fulltext pdf (2.4 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.12.039303
Keywords: magnets, machine learning, spin—orbit coupling, Dzyaloshinskii—Moriya interaction, multispin interaction, skyrmions, antiskyrmions, magnetic hedgehogs
PACS: 07.05.Mh, 75.10.−b, 75.30.−m, 75.40.Cx (all)
DOI: 10.3367/UFNe.2022.12.039303
URL: https://ufn.ru/en/articles/2023/11/g/
001131650500006
2-s2.0-85182587213
2023PhyU...66.1164P
Citation: Paradezhenko G V, Pervishko A A, Yudin D I "Machine learning for the search for topological spin textures" Phys. Usp. 66 1164–1173 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, October 2022, revised: 24th, November 2022, 21st, December 2022

Оригинал: Парадеженко Г В, Первишко А А, Юдин Д И «Машинное обучение для поиска топологических спиновых структур» УФН 193 1237–1247 (2023); DOI: 10.3367/UFNr.2022.12.039303

References (97) ↓ Similar articles (7)

  1. Irkhin V Yu, Irkhin Yu P Elektronnaya Struktura, Fizicheskie Svoistva I Korrelyatsionnye Effekty V D - I F-Metallakh I Ikh Soedineniyakh (Electronic Structure, Physical Properties And Correlation Effects In D- And F-Metals And Their Compounds) (Ekaterinburg: UrO RAN, 2004)
  2. Heisenberg W Z. Phys. 49 619 (1928)
  3. Eriksson O et al Atomistic Spin: Foundations And Applications (Oxford: Oxford Univ. Press, 2017)
  4. Vonsovskii S V Zh. Eksp. Teor. Fiz. 16 981 (1946)
  5. Kondo J Prog. Theor. Phys. 32 37 (1964)
  6. Hewson A C The Kondo Problem To Heavy Fermions (Cambridge: Cambridge Univ. Press, 2003)
  7. Ruderman M A, Kittel C Phys. Rev. 96 99 (1954)
  8. Kasuya T Prog. Theor. Phys. 16 45 (1956)
  9. Yosida K Phys. Rev. 106 893 (1957)
  10. Abrikosov A A Sov. Phys. Usp. 12 168 (1969); Abrikosov A A Usp. Fiz. Nauk 97 403 (1969)
  11. Kondo J Solid State Phys. 23 183 (1970)
  12. Tsvelick A M, Wiegmann P B Adv. Phys. 32 453 (1983)
  13. Dzyaloshinsky I J. Phys. Chem. Solids 4 241 (1958)
  14. Moriya T Phys. Rev. 120 91 (1960)
  15. Emori S et al Nat. Mater. 12 611 (2013)
  16. Ryu K-S et al Nat. Nanotechnol. 8 527 (2013)
  17. Yang H et al Phys. Rev. Lett. 115 267210 (2015)
  18. Soumyanarayanan A et al Nature 539 509 (2016)
  19. Caretta L et al Nat. Commun. 11 1090 (2020)
  20. Samardak A S et al Phys. Chem. Chem. Phys. 24 8225 (2022)
  21. Park J et al Acta Mater. 241 118383 (2022)
  22. Bogdanov A N, Yablonskii D A Sov. Phys. JETP 68 101 (1989); Bogdanov A N, Yablonskii D A Zh. Eksp. Teor. Fiz. 95 178 (1989)
  23. Bogdanov A JETP Lett. 62 247 (1995); Bogdanov A Pis’ma Zh. Eksp. Teor. Fiz. 62 231 (1995)
  24. Bogdanov A, Hubert A J. Magn. Magn. Mater. 138 255 (1994)
  25. Bogdanov A N, Rößler U K Phys. Rev. Lett. 87 037203 (2001)
  26. Rößler U K, Bogdanov A N, Pfleiderer C Nature 442 797 (2006)
  27. Rößler U K, Leonov A A, Bogdanov A N J. Phys. Conf. Ser. 200 022029 (2010)
  28. Kiselev N S et al J. Phys. D 44 392001 (2011)
  29. Dzyaloshinskii I E Sov. Phys. JETP 19 960 (1964); Dzyaloshinskii I E Zh. Eksp. Teor. Fiz. 46 1420 (1964)
  30. Izyumov Yu A Sov. Phys. Usp. 27 845 (1984); Izyumov Yu A Usp. Fiz. Nauk 144 439 (1984)
  31. Yi S D et al Phys. Rev. B 80 054416 (2009)
  32. Han J H et al Phys. Rev. B 82 094429 (2010)
  33. Nagaosa N, Tokura Y Nat. Nanotechnol. 8 899 (2013)
  34. Ambrose M C, Stamps R L New J. Phys. 15 053003 (2013)
  35. Pereiro M et al Nat. Commun. 5 4815 (2014)
  36. Yudin D, Gulevich D R, Titov M Phys. Rev. Lett. 119 147202 (2017)
  37. Böttcher M et al New J. Phys. 20 103014 (2018)
  38. Nishikawa Y, Hukushima K, Krauth W Phys. Rev. B 99 064435 (2019)
  39. Mohanta N, Dagotto E, Okamoto S Phys. Rev. B 100 064429 (2019)
  40. Mühlbauer S et al Science 323 915 (2009)
  41. Yu X Z et al Nature 465 901 (2010)
  42. Yu X Z et al Nat. Mater. 10 106 (2011)
  43. Lee M et al Phys. Rev. Lett. 102 186601 (2009)
  44. Kanazawa N et al Phys. Rev. Lett. 106 156603 (2011)
  45. Schulz T et al Nat. Phys. 8 301 (2012)
  46. Hayashi Y et al Nat. Commun. 12 5974 (2021)
  47. Bernevig B A, Felser C, Beidenkopf H Nature 603 41 (2022)
  48. Wang H et al Prog. Mater. Sci. 130 100971 (2022)
  49. Barker J, Tretiakov O A Phys. Rev. Lett. 116 147203 (2016)
  50. Bessarab P F et al Phys. Rev. B 99 140411 (2019)
  51. Legrand W et al Nat. Mater. 19 34 (2020)
  52. Woo S et al Nat. Commun. 9 959 (2018)
  53. Nayak A K et al Nature 548 561 (2017)
  54. Borisov A B Phys. Usp. 63 269 (2020); Borisov A B Usp. Fiz. Nauk 190 291 (2020)
  55. Tokura Y, Kanazawa N Chem. Rev. 121 2857 (2021)
  56. Göbel B, Mertig I, Tretiakov O A Phys. Rep. 895 1 (2021)
  57. Fujishiro Y et al Nat. Commun. 10 1059 (2019)
  58. Kent N et al Nat. Commun. 12 1562 (2021)
  59. Okumura S et al Phys. Rev. B 101 144416 (2020)
  60. Akagi Y, Udagawa M, Motome Y Phys. Rev. Lett. 108 096401 (2012)
  61. Hayami S, Motome Y Phys. Rev. B 90 060402 (2014)
  62. Hayami S, Ozawa R, Motome Y Phys. Rev. B 95 224424 (2017)
  63. Hayami S, Motome Y Phys. Rev. Lett. 121 137202 (2018)
  64. Pickover C A Artificial Intelligence: An Illustrated History: From Medieval Robots To Neural Networks (New York: Sterling, 2019); Translated into Russian, Pickover C A Iskusstvennyi Intellekt. Illyustrirovannaya Istoriya: Ot Avtomatov Do Neirosetei (Moscow: Sindbad, 2021)
  65. Abu-Mostafa Y S, Magdon-Ismail M, Lin H-T Learning From Data (Pasadena, CA: AMLBook, 2012)
  66. LeCun Y, Bengio Y, Hinton G Nature 521 436 (2015)
  67. Bishop C M Rev. Sci. Instrum. 65 1803 (1994)
  68. Hastie T, Tibshirani R, Friedman J The Elements Of Statistical Learning: Data Mining, Inference, And Prediction (New York: Springer, 2009)
  69. Cybenko G Math. Control. Signal. Systems 2 303 (1989)
  70. Spall J C Introduction To Stochastic Search And Optimization: Estimation, Simulation, And Control (Hoboken, NJ: Wiley-Interscience, 2003)
  71. Rumelhart D E, Hinton G E, Williams R J Nature 323 533 (1986)
  72. Nikolenko S, Kadurin A, Arkhangel’skaya E Glubokoe Obuchenie. Pogruzhenie V Mir Neironnykh Setei (Deep Learning. Dive Into The World Of Neural Networks) (St. Petersburg: Piter, 2018)
  73. Patterson J, Gibson A Deep Learning: A Practitioner’s Approach (Sebastopol, CA: O’Reilly, 2017); Translated into Russian, Patterson J, Gibson A Glubokoe Obuchenie S Tochki Zreniya Praktika (Moscow: DMK Press, 2018)
  74. Deng L, Liu Y (Eds) Deep Learning In Natural Language Processing (Singapore: Springer, 2018)
  75. Bishop C M Pattern Recognition And Machine Learning (New York: Springer, 2006); Translated into Russian, Bishop C M Raspoznavanie Obrazov I Mashinnoe Obuchenie (Moscow-St. Petersburg: Dialektika, 2020)
  76. Tunstall L, von Werra L, Wolf T Natural Language Processing With Transformers: Building Language Applications With Hugging Face (Sebastopol: O’Reilly Media, 2022)
  77. Carleo G et al Rev. Mod. Phys. 91 045002 (2019)
  78. Karniadakis G E et al Nat. Rev. Phys. 3 422 (2021)
  79. Carrasquilla J, Melko R G Nat. Phys. 13 431 (2017)
  80. van Nieuwenburg E P L, Liu Y-H, Huber S D Nat. Phys. 13 435 (2017)
  81. Carleo G, Troyer M Science 355 602 (2017)
  82. Torlai G et al Nat. Phys. 14 447 (2018)
  83. Macarone Palmieri A et al Npj Quantum Inf. 6 20 (2020)
  84. Iakovlev I A, Sotnikov O M, Mazurenko V V Phys. Rev. B 98 174411 (2018)
  85. Shirinyan A A et al Phys. Rev. B 99 041108 (2019)
  86. Kwon H Y et al Phys. Rev. B 99 024423 (2019)
  87. Swain N et al Phys. Rev. B 104 235156 (2021)
  88. Paradezhenko G V et al Phys. Chem. Chem. Phys. 24 24317 (2022)
  89. Zvezdin A K, Zvezdin K A, Khval’kovskii A V Phys. Usp. 51 412 (2008); Zvezdin A K, Zvezdin K A, Khval’kovskii A V Usp. Fiz. Nauk 178 436 (2008)
  90. Pervishko A A, Yudin D I Phys. Usp. 65 215 (2022); Pervishko A A, Yudin D I Usp. Fiz. Nauk 192 233 (2022)
  91. Kartsev A et al Npj Comput. Mater. 6 150 (2020)
  92. Kingma D P, Ba J arXiv:1412.6980
  93. Kapitan V et al AIP Adv. 11 015041 (2021)
  94. Huang S et al Phys. Rev. B 96 144412 (2017)
  95. Chen J et al Sci. Rep. 7 7392 (2017)
  96. van Laarhoven P J M, Aarts E H L Simulated Annealing: Theory And Applications (Norwell, MA: Kluwer Acad. Publ., 1987)
  97. Cormen T H et al Introduction To Algorithms (Cambridge, MA: MIT Press, 2001); Translated into Russian, Cormen T H et al Algoritmy. Postroenie I Analiz (Algorithms. Construction And Analysis) (Moscow-St. Petersburg: Williams, 2005)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions