Issues

 / 

2023

 / 

October

  

On the 100th anniversary of the birth of N G Basov. Conferences and symposia


N G Basov's legacy: from the first masers to optical frequency standards

 a,  a,  a,  b,   b, c
a "VREMYA-CH" JS COMPANY, Osharskaya str. 67, pom. 10, Nizhny Novgorod, 603105, Russian Federation
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
c International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), Skolkovo Innovation Center, Bolshoi Boulevard, Building 30, Block 1, 3rd floor, sectors G3, G7, Moscow, Moscow Region, 121205, Russian Federation

The pioneering ideas of N G Basov, the centennial of whose birth was solemnly celebrated in 2022, laid the foundation for a number of modern research and technology areas in the field of quantum electronics and laser physics: from precision laser experiments aimed at testing the fundamental laws of physics to laser ignition of thermonuclear targets, from high-speed data transmission lines to laser welding and material processing. In this review paper, which was presented at the Basov centennial Scientific Session of the Physical Division of the Russian Academy of Sciences, we discuss the development and current state of the 'firstborn' of a series of scientific victories — the hydrogen maser (H-maser). The performance of H-masers is continuously being improved, and they are involved in solving a wide range of problems: time and frequency metrology, satellite navigation, and space radio astronomy. Russia is the recognized world leader in the development of maser technology, which is a brilliant example of the successful implementation of Basov's ideas. The natural development of this field is the advent of optical frequency standards, whose development prospects are discussed in the final part of the review.

Fulltext pdf (1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.11.039347
Keywords: frequency standard, maser, H-maser, relativistic tests, VLBI, optical clocks
PACS: 06.20.−f, 84.40.lk, 95.55.Sh (all)
DOI: 10.3367/UFNe.2022.11.039347
URL: https://ufn.ru/en/articles/2023/10/e/
001112744100005
2-s2.0-85182883707
2023PhyU...66.1026B
Citation: Belyaev A A, Voronzov V G, Demidov N A, Khabarova K Yu, Kolachevsky N N "N G Basov's legacy: from the first masers to optical frequency standards" Phys. Usp. 66 1026–1036 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, April 2023, 28th, November 2022

Оригинал: Беляев А А, Воронцов В Г, Демидов Н А, Хабарова К Ю, Колачевский Н Н «Наследие Н.Г. Басова: от первых мазеров к оптическим стандартам частоты» УФН 193 1091–1102 (2023); DOI: 10.3367/UFNr.2022.11.039347

References (63) ↓ Cited by (6) Similar articles (8)

  1. Basov N G, Prokhorov A M Vsesoyuz. Konf. po Radiospektroskopii, Mai 1952, AN SSSR (All-Union Conf. on Radio Spectroscopy, May 1952, USSR Academy of Sciences)
  2. Basov N G, Prokhorov A M Usp. Fiz. Nauk 57 485 (1955)
  3. Kleppner D, Goldenberg H M, Ramsey N F Phys. Rev. 126 603 (1962)
  4. Ramsey N F Angew. Chem. Int. Engl. Ed. 29 725 (1990)
  5. Hellwig H et al IEEE Trans. Instrum. Meas. 19 200 (1970)
  6. Weyers S et al Metrologia 55 789 (2018)
  7. Mohr P J, Taylor B N Rev. Mod. Phys. 77 1 (2005)
  8. Weaver H et al Nature 208 29 (1965)
  9. Strel’nitskii V S Sov. Phys. Usp. 17 507 (1975); Strel’nitskii V S Usp. Fiz. Nauk 113 463 (1974)
  10. Basov N G, Letokhov V S Sov. Phys. Usp. 11 855 (1969); Basov N G, Letokhov V S Usp. Fiz. Nauk 96 585 (1968)
  11. Brewer S M et al Phys. Rev. Lett. 123 033201 (2019)
  12. Safronova M S et al Rev. Mod. Phys. 90 025008 (2018)
  13. Vorontsov V G et al Metrologiya Vremeni i Prostranstva. Mezhdunarodnyi Simpozium, Mendeleevo, Moskovskaya Oblast’, Rossiya, 12-14 Sentyabrya 2018 (Metrology of Time and Space. Intern. Symp., Mendeleevo, Moscow Region, Russia, 12-14 September 2018, Exec. Ed. L A Tokina) (Mendeleevo: VNIIFTRI, 2018)
  14. Table 4. Equipment and source of UTC(k) of the laboratories contributing to TAI in 2020, https://www.bipm.org/documents/20126/59466374/10_Table4_TAR20.pdf/0ae3ed2f-f998-9398-fc96-6d12f406f8f6
  15. Slyusarev S N et al Metrologiya Vremeni i Prostranstva. Mezhdunarodnyi Simpozium, Mendeleevo, Moskovskaya oblast’, Rossiya, 12-14 Sentyabrya 2018 (Metrology of Time and Space. Intern. Symp., Mendeleevo, Moscow Region, Russia, 12-14 September 2018, Exec. Ed. L A Tokina) (Mendeleevo: VNIIFTRI, 2018)
  16. Haroche S et al Laser Spectroscopy IV, Proc. of the Fourth Intern. Conf. on Laser Spectroscopy, June 11-15, 1979, Rottach-Egern, Federal Republic of Germany (Springer Series in Optical Sciences) Vol. 21 (Ed. A L Schawlow) (Berlin: Springer-Verlag, 1979) p. 244
  17. Polyakov V, Timofeev Y, Demidov N 2021 Joint Conf. of the European Frequency and Time Forum and IEEE Intern. Frequency Control Symp., EFTF/IFCS, Gainesville, FL, USA, 2021 (Piscataway, NJ: IEEE, 2021) p. 1
  18. Basov N G et al Sov. Phys. Usp. 4 641 (1962); Basov N G et al Usp. Fiz. Nauk 75 3 (1961)
  19. Ashby N Living Rev. Relativ. 6 (1) 1 (2003)
  20. Khabarova K Nature 602 391 (2022)
  21. Vessot R F C Phys. Rev. Lett. 45 2081 (1980)
  22. Delva P et al Phys. Rev. Lett. 121 231101 (2018)
  23. Kovalev Y Y et al 2014 XXXIth URSI General Assembly and Scientific Symp., 16-23 August 2014, Beijing, China
  24. Smirov A V et al Proc. SPIE 8442 1456 (2012)
  25. Schiller S et al arXiv:1206.3765
  26. Bakit’ko R V et al GLONASS. Modernizatsiya I Perspektivy Razvitiya (GLONASS. Modernization And Development Prospects) (Moscow: Radiotekhnika, 2020)
  27. Mattioni L et al Proc. of the 34th Annual Precise Time and Time Interval Systems and Applications Meeting, December 3-5, 2002, Reston, Virginia
  28. Rochat P et al Proc. of the 2005 IEEE Intern. Frequency Control Symposium and Exposition 26, Vancouver, 2005
  29. Khabarova K et al Symmetry 14 2213 (2022)
  30. Kolachevsky N N et al Space 5 (1) 12 (2018)
  31. Fischer M et al Phys. Rev. Lett. 92 230802 (2004)
  32. Bloom B J et al Nature 506 71 (2014)
  33. Ushijima I et al Nat. Photon. 9 185 (2015)
  34. Huang Y et al Phys. Rev. Appl. 17 034041 (2022)
  35. Huntermann N et al Phys. Rev. Lett. 116 063001 (2016)
  36. Khabarova K Yu, Zalivako I V, Kolachevsky N N Phys. Usp. 65 1217 (2022); Khabarova K Yu, Zalivako I V, Kolachevsky N N Usp. Fiz. Nauk 192 1305 (2022)
  37. Vishnyakova G A et al Phys. Usp. 59 168 (2016); Vishnyakova G A et al Usp. Fiz. Nauk 186 176 (2016)
  38. Kalganova E et al Phys. Rev. A 96 033418 (2017)
  39. Takamoto M et al Nature 435 321 (2005)
  40. Tregubov D O et al Quantum Electron. 49 1028 (2019)
  41. Zhang A et al Metrologia 59 065009 (2022)
  42. Ludlow A D et al Rev. Mod. Phys. 87 637 (2015)
  43. Golovizin A Nat. Commun. 10 1724 (2019)
  44. Golovizin A et al Opt. Express 29 36734 (2021)
  45. Yudin V I et al Phys. Rev. Lett. 107 030801 (2011)
  46. Golovizin A et al Nat. Commun. 12 5171 (2021)
  47. Kessler T et al Nat. Photon. 6 687 (2012)
  48. Mehlstaeubler T E et al Rep. Prog. Phys. 81 064401 (2018)
  49. Takamoto M et al Nat. Photon. 14 411 (2020)
  50. Huang Y et al Phys. Rev. A 102 050802 (2020)
  51. Dick G J et al Proc. of the 22nd Annual Precise Time and Time Interval Systems and Applications Meeting, December 4-6, 1990, Vienna, Virginia p. 487
  52. Oelker E et al Nat. Photon. 13 714 (2019)
  53. Takamoto M et al C.R. Phys. 16 489 (2015)
  54. Katori H Appl. Phys. Express 14 072006 (2021)
  55. Norcia M A, Thompson J K Phys. Rev. X 6 011025 (2016)
  56. Mishin D et al Appl. Phys. Express 14 112006 (2021)
  57. Jallageas A et al J. Phys. Conf. Ser. 723 012010 (2016)
  58. Bothwell T et al Nature 602 420 (2022)
  59. Nikolai Gennadievich Basov, 100 Let So Dnya Rozhdeniya (Nikolai Gennadievich Basov, 100 Years Since The Birth) (Moscow: Izd. RMP, 2022)
  60. King S A et al Nature 611 43 (2022)
  61. Kazakov G A et al New J. Phys. 14 083019 (2012)
  62. Campbell C J et al Phys. Rev. Lett. 108 120802 (2012)
  63. Brasch V et al Science 351 357 (2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions