Issues

 / 

2022

 / 

September

  

Reviews of topical problems


Superconducting quantum fluctuations in one dimension

  a, b,   a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

We review some recent developments in the field of quasi-one-dimensional superconductivity. We demonstrate that low temperature properties of superconducting nanowires are essentially determined by quantum fluctuations. Smooth (Gaussian) fluctuations of the superconducting phase (also associated with plasma modes propagating along a wire) may significantly affect the electron density of states in such nanowires and induce persistent current noise in superconducting nanorings. Further interesting phenomena, such as nonvanishing resistance and shot noise of the voltage in current-biased superconducting nanowires, are caused by non-Gaussian fluctuations of the order parameter — quantum phase slips (QPSs). Such phenomena may be interpreted in terms of the tunneling of fluxons playing the role of effective quantum 'particles' dual to Cooper pairs and obeying complicated full counting statistics, which reduces to the Poissonian one in the low frequency limit. We also demonstrate that QPS effects may be particularly pronounced in the thinnest wires and rings, where quantum phase slips remain unbound and determine a nonperturbative length scale Lc, beyond which the supercurrent gets suppressed by quantum fluctuations. Accordingly, for T→ 0, such nanowires should become insulating at scales exceeding Lc, whereas at shorter length scales they may still exhibit superconducting properties. We argue that certain nontrivial features associated with quantum fluctuations of the order parameter may be sensitive to a specific circuit topology and may be observed in structures like a system of capacitively coupled superconducting nanowires.

Fulltext pdf (2.8 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.04.038962
Keywords: superconductivity, low-dimensional systems, quantum fluctuations, quantum phase slips
PACS: 74.25.F−, 74.40.−n, 74.78.Na (all)
DOI: 10.3367/UFNe.2021.04.038962
URL: https://ufn.ru/en/articles/2022/9/a/
001099189500001
2-s2.0-85108789686
2022PhyU...65..883S
Citation: Semenov A G, Zaikin A D "Superconducting quantum fluctuations in one dimension" Phys. Usp. 65 883–919 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, August 2020, revised: 5th, March 2021, 7th, April 2021

Оригинал: Семенов А Г, Заикин А Д «Сверхпроводящие квантовые флуктуации в одном измерении» УФН 192 945–983 (2022); DOI: 10.3367/UFNr.2021.04.038962

References (95) ↓ Cited by (5) Similar articles (20)

  1. Zaikin A D, Golubev D S Dissipative Quantum Mechanics Of Nanostructures: Electron Transport, Fluctuations, And Interactions (Singapore: Jenny Stanford, Publ., 2019)
  2. Arutyunov K Yu, Golubev D S, Zaikin A D Phys. Rep. 464 1 (2008)
  3. Larkin A, Varlamov A Theory Of Fluctuations In Superconductors (Oxford: Clarendon Press, 2005)
  4. Bezryadin A J. Phys. Condens. Matter 20 043202 (2008)
  5. Zaikin A D Handbook Of Nanophysics: Nanotubes And Nanowires (Ed. K D Sattler) (Boca Raton, FL: CRC Press. Taylor and Francis Group, 2010) p. 40-1
  6. Bezryadin A Superconductivity In Nanowires: Fabrication And Quantum Transport (Weinheim: Wiley-VCH Verlag, 2013)
  7. Mermin N D, Wagner H Phys. Rev. Lett. 17 1133 (1966)
  8. Hohenberg P C Phys. Rev. 158 383 (1967)
  9. Berezinskii V S Sov. Phys. JETP 32 493 (1971); Berezinskii V S Zh. Eksp. Teor. Fiz. 59 907 (1971); Berezinskii V S Sov. Phys. JETP 34 610 (1972); Berezinskii V S Zh. Eksp. Teor. Fiz. 61 1144 (1971)
  10. Kosterlitz J M, Thouless D J J. Phys. C 6 1181 (1973)
  11. Kosterlitz J M J. Phys. C 7 1046 (1974)
  12. Zaikin A D et al Phys. Rev. Lett. 78 1552 (1997)
  13. van Otterlo A, Golubev D S, Zaikin A D, Blatter G Eur. Phys. J. B 10 131 (1999)
  14. Golubev D S, Zaikin A D Phys. Rev. B 64 014504 (2001)
  15. Golubev D S, Zaikin A D Phys. Rev. B 78 144502 (2008)
  16. Mooij J E, Schön G Phys. Rev. Lett. 55 114 (1985)
  17. Little W A Phys. Rev. 156 396 (1967)
  18. Langer J S, Ambegaokar V Phys. Rev. 164 498 (1967)
  19. McCumber D E, Halperin B I Phys. Rev. B 1 1054 (1970)
  20. Lukens J E, Warburton R J, Webb W W Phys. Rev. Lett. 25 1180 (1970)
  21. Newbower R S, Beasley M R, Tinkham M Phys. Rev. B 5 864 (1972)
  22. Bezryadin A, Lau C N, Tinkham M Nature 404 971 (2000)
  23. Lau C N et al Phys. Rev. Lett. 87 217003 (2001)
  24. Zgirski M et al Phys. Rev. B 77 054508 (2008)
  25. Lehtinen J S et al Phys. Rev. B 85 094508 (2012)
  26. Baumans X D A et al Nat. Commun. 7 10560 (2016)
  27. Radkevich A, Semenov A G, Zaikin A D Phys. Rev. B 96 085435 (2017)
  28. Usadel K D Phys. Rev. Lett. 25 507 (1970)
  29. Belzig W et al Superlatt. Microstruct. 25 1251 (1999)
  30. Dynes R C, Narayanamurti V, Garno J P Phys. Rev. Lett. 41 1509 (1978)
  31. Panyukov S V, Zaikin A D J. Low Temp. Phys. 73 1 (1988)
  32. Arutyunov K Yu et al J. Magn. Magn. Mater. 459 356 (2018)
  33. Camarota B et al Phys. Rev. Lett. 86 480 (2001)
  34. Semenov A G, Zaikin A D Phys. Rev. B 88 054505 (2013)
  35. Semenov A G, Zaikin A D J. Phys. Condens. Matter 22 485302 (2010)
  36. Scalapino D J, White S R, Zhang S Phys. Rev. B 47 7995 (1993)
  37. Resta R J. Phys. Condens. Matter 30 414001 (2018)
  38. Zaikin A D, Panyukov S V Phys. Lett. A 120 306 (1987)
  39. Averin D V, Odintsov A A Phys. Lett. A 140 251 (1989)
  40. Zaikin A D J. Low Temp. Phys. 80 223 (1990)
  41. Schön G, Zaikin A D Phys. Rep. 198 237 (1990)
  42. Mooij J E, Nazarov Yu V Nat. Phys. 2 169 (2006)
  43. Semenov A G, Zaikin A D Low Temp. Phys. 43 805 (2017); Semenov A G, Zaikin A D Fiz. Nizk. Temp. 43 1011 (2017)
  44. Barone A, Paternò G Physics And Applications Of The Josephson Effect (New York: Wiley, 1982)
  45. Astafiev O V et al Nature 484 355 (2012)
  46. Peltonen J T et al Phys. Rev. B 88 220506 (2013)
  47. Lehtinen J S, Zakharov K, Arutyunov K Yu Phys. Rev. Lett. 109 187001 (2012)
  48. Shaikhaidarov R S et al Nature 608 45 (2022)
  49. Il’ichev E V, Ryazanov V V, Astafiev O V Phys. Rev. Lett. 128 159701 (2022)
  50. Arutyunov K Yu, Lehtinen J S Phys. Rev. Lett. 128 159702 (2022)
  51. Hongisto T T, Zorion A B Phys. Rev. Lett. 108 097001 (2012)
  52. de Graaf S E et al Nat. Phys. 14 590 (2018)
  53. Wang Z M, Lehtinen J S, Arutyunov K Yu Appl. Phys. Lett. 114 242601 (2019)
  54. Semenov A G, Zaikin A D Phys. Scr. 2012 (T151) 014022 (2012)
  55. Mooij J E, Harmans C J P M New J. Phys. 7 219 (2005)
  56. Semenov A G, Zaikin A D Phys. Rev. B 84 045416 (2011)
  57. Averin D, Imam H T Phys. Rev. Lett. 76 3814 (1996)
  58. Martín-Rodero A, Levy Yeyati A, García-Vidal F J Phys. Rev. B 53 R8891 (1996)
  59. Galaktionov A V, Zaikin A D Phys. Rev. B 82 184520 (2010)
  60. Blanter Ya M, Büttiker M Phys. Rep. 336 1 (2000)
  61. Semenov A G, Zaikin A D Phys. Rev. B 94 014512 (2016)
  62. Weiss U Quantum Dissipative Systems (Singapore: World Scientific, 2008) p. 207
  63. Semenov A G, Zaikin A D Fortschr. Phys. 65 1600043 (2017)
  64. Controzzi D, Essler F H L, Tsvelik A M Phys. Rev. Lett. 86 680 (2001)
  65. Semenov A G, Zaikin A D J. Supercond. Nov. Magn. 30 139 (2017)
  66. Semenov A G, Zaikin A D J. Supercond. Nov. Magn. 31 711 (2018)
  67. Golubev D S et al Phys. Rev. B 81 184516 (2010)
  68. Žonda M, Belzig W, Novotný T Phys. Rev. B 91 134305 (2015)
  69. Semenov A G, Zaikin A D Phys. Rev. B 99 094516 (2019)
  70. Galaktionov A V, Golubev D S, Zaikin A D Phys. Rev. B 68 235333 (2003)
  71. Averin D V, Nazarov Yu V, Odintsov A A Physica B 165-166 945 (1990)
  72. Bobbert P A, Fazio R, Schön G, Zaikin A D Phys. Rev. B 45 2294 (1992)
  73. Radkevich A, Semenov A G, Zaikin A D Phys. Rev. B 100 014520 (2019)
  74. Kleinert H Electron. J. Theor. Phys. 8 (25) 57 (2011)
  75. Fisher M P A, Zwerger W Phys. Rev. B 32 6190 (1985)
  76. Schmid A Phys. Rev. Lett. 51 1506 (1983)
  77. Panyukov S V, Zaikin A D Physica B 152 162 (1988)
  78. Lukyanov S, Zamolodchikov A Nucl. Phys. B 493 571 (1997)
  79. Gogolin A O, Nersesyan A A, Tsvelik A M Bosonization And Strongly Correlated Systems (Cambridge: Cambridge Univ. Press, 1998)
  80. Radkevich A, Semenov A G, Zaikin A D J. Supercond. Nov. Magn. 33 2335 (2020)
  81. Hekking F W J, Glazman L I Phys. Rev. B 55 6551 (1997)
  82. Latyshev A, Semenov A G, Zaikin A D J. Supercond. Nov. Magn. 33 2329 (2020)
  83. Latyshev A, Semenov A G, Zaikin A D Beilstein J. Nanotechnol. 11 1402 (2020)
  84. Latyshev A, Semenov A G, Zaikin A D Beilstein J. Nanotechnol. 13 292 (2022)
  85. Guinea F, Schön G Europhys. Lett. 1 585 (1986)
  86. Panyukov S V, Zaikin A D Phys. Rev. Lett. 67 3168 (1991)
  87. Hofstetter W, Zwerger W Phys. Rev. Lett. 78 3737 (1997)
  88. Kindermann M, Nazarov Yu V Phys. Rev. Lett. 91 136802 (2003)
  89. Golubev D S, Zaikin A D Phys. Rev. B 69 075318 (2004)
  90. Bagrets D A, Nazarov Yu V Phys. Rev. Lett. 94 056801 (2005)
  91. Bulgadaev S A JETP Lett. 39 315 (1984); Bulgadaev S A Pis’ma Zh. Eksp. Teor. Fiz. 39 264 (1984)
  92. Guinea F, Hakim V, Muramatsu A Phys. Rev. Lett. 54 263 (1985)
  93. Delacour C et al Nano Lett. 12 3501 (2012)
  94. Arutyunov K Yu et al Commun. Phys. 4 146 (2021)
  95. Bollinger A T et al Phys. Rev. Lett. 101 227003 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions