Issues

 / 

2022

 / 

May

  

Methodological notes


Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuum

 
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The duality of four-dimensional electrodynamics and the theory of a two-dimensional massless scalar field leads to a functional coincidence of the spectra of the mean number of photons emitted by a point-like electric charge in 3+1 dimensions and the spectra of the mean number of scalar quanta pairs emitted by a point mirror in 1+1 dimensions. The spectra differ only by the factor $e^2/\hbar c$ (in Heaviside units). The requirement that the spectra be identical determines unique values of the point-like charge $e_0=\pm \sqrt {\hbar c}$ and its fine structure constant $\alpha _0=1/4\pi$, which have all the properties required by Gell-Mann and Low for a finite bare charge. The Dyson renormalization constant $Z_3\equiv \alpha /\alpha _0= 4\pi\alpha$ is finite and lies in the range $0 < Z_3 < 1$, in agreement with the Källén—Lehmann spectral representation sum rule for the exact Green's function of the photon. The value of $Z_3$ also lies in a very narrow interval $\alpha _{\rm L} < Z_3 \equiv \alpha /\alpha _0 = 4\pi \alpha < \alpha _{\rm B}$ between the values $\alpha _{\rm L} = 0.0916$ and $\alpha _{\rm B} = 0.0923$ of the parameters defining the shifts $E_{\rm L, \,B} = \alpha _{\rm L, \,B}\hbar c/2r$ of the energy of zero-point fluctuations of the electromagnetic field in cubic and spherical resonators with the cube edge length equal to the sphere diameter, $L = 2r$. In this case, the cube is circumscribed about the sphere. That the difference between the coefficients $\alpha _{\rm L,\, B}$ is very small can be explained by the general property of all polyhedra circumscribed about a sphere: despite the difference between their shapes, they share a topological invariant, the surface-to-volume ratio $S/V = 3/r$, the same as for the sphere itself. Shifts of the energy of zero-point oscillations in such resonators are also proportional to this invariant: $E_{\rm L, \,B} = \alpha _{\rm L, \,B} \hbar c S/6V$. On the other hand, the shifts $E_{\rm L, \,B} = \alpha _{\rm L, \,B}\hbar c/2r$ of the energy of zero-point oscillations of the electromagnetic field essentially coincide with the energy of the mean squared fluctuations of the volume-averaged electric and magnetic fields in resonators, equal to $Z_3\hbar c/2r$ in order of magnitude. It hence follows that $\alpha _{\rm L, \,B}\approx Z_3$, as it should for the coefficients $\alpha _\gamma$ of the shifts $\alpha _\gamma $ of the shifts $E_\gamma = \alpha _\gamma \hbar c/2r$ in other resonators $\gamma$ circumscribed about a sphere. The closeness of $\alpha _{\rm L}$ and $\alpha _{\rm B}$ to the $Z_3$ factor is confirmed by the Källén—Lehmann spectral representation and agrees with asymptotic conditions relating the photon creation amplitudes for free and interacting vector fields.

Fulltext pdf (788 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.02.039167
Keywords: nonperturbative methods, physical charge, bare charge, renorminvariant charge, duality of 4-dimensional and 2-dimensional field theories, spectral representation of Green's functions, sum rule, zero-point fluctuations of a field in a vacuum, cavity resonator, topological invariant, conformal invariance
PACS: 02.40.−k, 03.70.+k, 05.40.−a, 11.10.Hi, 11.10.Jj, 11.55.Hx, 12.20.−m, 41.60.−m (all)
DOI: 10.3367/UFNe.2022.02.039167
URL: https://ufn.ru/en/articles/2022/5/d/
001112520100004
2-s2.0-85152541242
2022PhyU...65..468R
Citation: Ritus V I "Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuum" Phys. Usp. 65 468–486 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, June 2021, revised: 25th, October 2021, 27th, February 2022

Оригинал: Ритус В И «Конечное значение затравочного заряда и связь отношения постоянных тонкой структуры физического и затравочного зарядов с нулевыми колебаниями электромагнитного поля в вакууме» УФН 192 507–526 (2022); DOI: 10.3367/UFNr.2022.02.039167

References (58) Cited by (11) Similar articles (20) ↓

  1. V.I. Ritus “Duality of two-dimensional field theory and four-dimensional electrodynamics leading to finite value of the bare chargePhys. Usp. 56 565–589 (2013)
  2. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild fieldPhys. Usp. 58 1118–1123 (2015)
  3. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motorsPhys. Usp. 62 496–509 (2019)
  4. B.M. Bolotovskii, S.N. Stolyarov “Law of conservation of energy for the electromagnetic field as applied to radiation by moving charged particlesSov. Phys. Usp. 35 (3) 248–254 (1992)
  5. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theoryPhys. Usp. 50 1217–1238 (2007)
  6. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent mediaPhys. Usp. 60 935–947 (2017)
  7. V.L. Ginzburg “Radiation and radiation friction force in uniformly accelerated motion of a ChargeSov. Phys. Usp. 12 565–574 (1970)
  8. L.V. Prokhorov “Quantization of the electromagnetic fieldSov. Phys. Usp. 31 151–162 (1988)
  9. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  10. M.V. Kuzelev, A.A. Rukhadze “Nonrelativistic quantum theory of stimulated Cherenkov radiation and Compton scattering in a plasmaPhys. Usp. 54 375–380 (2011)
  11. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  12. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motorsPhys. Usp. 67 1046–1055 (2024)
  13. V.S. Malyshevsky “Is it possible to measure the electromagnetic radiation of an instantly started charge?Phys. Usp. 60 1294–1301 (2017)
  14. A.Ya. Burinskii “Kerr—Newman solution unites gravitation with quantum theoryPhys. Usp. 67 1034–1045 (2024)
  15. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at restPhys. Usp. 63 601–610 (2020)
  16. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiationPhys. Usp. 58 819–827 (2015)
  17. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic mediaPhys. Usp. 51 363–374 (2008)
  18. L.A. Rivlin “Photons in a waveguide (some thought experiments)Phys. Usp. 40 291–303 (1997)
  19. V.A. Bordovitsyn, I.M. Ternov, V.G. Bagrov “Spin lightPhys. Usp. 38 1037–1047 (1995)
  20. A.A. Logunov “The theory of the classical gravitational fieldPhys. Usp. 38 179–193 (1995)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions