Issues

 / 

2022

 / 

May

  

Methodological notes


Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuum

 
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The duality of four-dimensional electrodynamics and the theory of a two-dimensional massless scalar field leads to a functional coincidence of the spectra of the mean number of photons emitted by a point-like electric charge in 3+1 dimensions and the spectra of the mean number of scalar quanta pairs emitted by a point mirror in 1+1 dimensions. The spectra differ only by the factor $e^2/\hbar c$ (in Heaviside units). The requirement that the spectra be identical determines unique values of the point-like charge $e_0=\pm \sqrt {\hbar c}$ and its fine structure constant $\alpha _0=1/4\pi$, which have all the properties required by Gell-Mann and Low for a finite bare charge. The Dyson renormalization constant $Z_3\equiv \alpha /\alpha _0= 4\pi\alpha$ is finite and lies in the range $0 < Z_3 < 1$, in agreement with the Källén—Lehmann spectral representation sum rule for the exact Green's function of the photon. The value of $Z_3$ also lies in a very narrow interval $\alpha _{\rm L} < Z_3 \equiv \alpha /\alpha _0 = 4\pi \alpha < \alpha _{\rm B}$ between the values $\alpha _{\rm L} = 0.0916$ and $\alpha _{\rm B} = 0.0923$ of the parameters defining the shifts $E_{\rm L, \,B} = \alpha _{\rm L, \,B}\hbar c/2r$ of the energy of zero-point fluctuations of the electromagnetic field in cubic and spherical resonators with the cube edge length equal to the sphere diameter, $L = 2r$. In this case, the cube is circumscribed about the sphere. That the difference between the coefficients $\alpha _{\rm L,\, B}$ is very small can be explained by the general property of all polyhedra circumscribed about a sphere: despite the difference between their shapes, they share a topological invariant, the surface-to-volume ratio $S/V = 3/r$, the same as for the sphere itself. Shifts of the energy of zero-point oscillations in such resonators are also proportional to this invariant: $E_{\rm L, \,B} = \alpha _{\rm L, \,B} \hbar c S/6V$. On the other hand, the shifts $E_{\rm L, \,B} = \alpha _{\rm L, \,B}\hbar c/2r$ of the energy of zero-point oscillations of the electromagnetic field essentially coincide with the energy of the mean squared fluctuations of the volume-averaged electric and magnetic fields in resonators, equal to $Z_3\hbar c/2r$ in order of magnitude. It hence follows that $\alpha _{\rm L, \,B}\approx Z_3$, as it should for the coefficients $\alpha _\gamma$ of the shifts $\alpha _\gamma $ of the shifts $E_\gamma = \alpha _\gamma \hbar c/2r$ in other resonators $\gamma$ circumscribed about a sphere. The closeness of $\alpha _{\rm L}$ and $\alpha _{\rm B}$ to the $Z_3$ factor is confirmed by the Källén—Lehmann spectral representation and agrees with asymptotic conditions relating the photon creation amplitudes for free and interacting vector fields.

Fulltext pdf (788 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.02.039167
Keywords: nonperturbative methods, physical charge, bare charge, renorminvariant charge, duality of 4-dimensional and 2-dimensional field theories, spectral representation of Green's functions, sum rule, zero-point fluctuations of a field in a vacuum, cavity resonator, topological invariant, conformal invariance
PACS: 02.40.−k, 03.70.+k, 05.40.−a, 11.10.Hi, 11.10.Jj, 11.55.Hx, 12.20.−m, 41.60.−m (all)
DOI: 10.3367/UFNe.2022.02.039167
URL: https://ufn.ru/en/articles/2022/5/d/
001112520100004
2-s2.0-85152541242
2022PhyU...65..468R
Citation: Ritus V I "Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuum" Phys. Usp. 65 468–486 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, June 2021, revised: 25th, October 2021, 27th, February 2022

Оригинал: Ритус В И «Конечное значение затравочного заряда и связь отношения постоянных тонкой структуры физического и затравочного зарядов с нулевыми колебаниями электромагнитного поля в вакууме» УФН 192 507–526 (2022); DOI: 10.3367/UFNr.2022.02.039167

References (58) ↓ Cited by (10) Similar articles (20)

  1. Schwinger J Particles, Sources, And Fields (Reading, Mass.: Addison-Wesley Publ. Co., 1970); Translated into Russian, Schwinger J Chastitsy, Istochniki, Polya Vol. 1 (Moscow: Mir, 1973)
  2. Nikishov A I, Ritus V I J. Exp. Theor. Phys. 81 615 (1995); Nikishov A I, Ritus V I Zh. Eksp. Teor. Fiz. 108 1121 (1995)
  3. Ritus V I J. Exp. Theor. Phys. 83 282 (1996); Ritus V I Zh. Eksp. Teor. Fiz. 110 526 (1996)
  4. Ritus V I J. Exp. Theor. Phys. 87 25 (1998); Ritus V I Zh. Eksp. Teor. Fiz. 114 46 (1998); Ritus V I J. Exp. Theor. Phys. 88 207 (1998), Erratum; Ritus V I Zh. Eksp. Teor. Fiz. 115 384 (1999), Erratum
  5. Ritus V I J. Exp. Theor. Phys. 89 821 (1999); Ritus V I Zh. Eksp. Teor. Fiz. 116 1523 (1999)
  6. Ritus V I J. Exp. Theor. Phys. 97 10 (2003); Ritus V I Zh. Eksp. Teor. Fiz. 124 14 (2003)
  7. Ritus V I J. Exp. Theor. Phys. 102 582 (2006); Ritus V I Zh. Eksp. Teor. Fiz. 129 664 (2006)
  8. Ritus V I Phys. Usp. 56 565 (2013); Ritus V I Usp. Fiz. Nauk 183 591 (2013)
  9. Ritus V I J. Russ. Laser Res. 36 101 (2015)
  10. Gell-Mann M, Low F E Phys. Rev. 95 1300 (1954)
  11. Courant R, Hilbert D Methoden Der Mathematischen Physik Vol. 2 (Berlin: J. Springer, 1937); Translated into English, Courant R, Hilbert D Methods In Mathematical Physics Vol. 2 (New York: Interscience, 1962); Translated into Russian, Courant R, Hilbert D Metody Matematicheskoi Fiziki Vol. 2 (Moscow-Leningrad: GITTL, 1945)
  12. Dirac P A M Directions In Physics: Lectures Delivered During A Visit To Australia And New Zealand August/September 1975 (Eds H Hora, J R Shepanski) (New York: Wiley, 1978)
  13. Dyson F J Phys. Rev. 75 1736 (1949)
  14. Källén G Helv. Phys. Acta 25 417 (1952)
  15. Lehmann H Nuovo Cimento 11 342 (1954)
  16. Schwinger J Phys. Rev. 125 397 (1962)
  17. Schwinger J Phys. Rev. 128 2425 (1962)
  18. Boyer T H Phys. Rev. 174 1764 (1968)
  19. Lukosz W Physica 56 109 (1971)
  20. Davies B J. Math. Phys. 13 1324 (1972)
  21. Balian R, Duplantier B Ann. Physics 112 165 (1978)
  22. Milton K A, DeRaad L L (Jr.), Schwinger J Ann. Physics 115 388 (1978)
  23. Schwinger J, DeRaad L L (Jr.), Milton K A Ann. Physics 115 1 (1978)
  24. Mamaev S G, Trunov N N Theor. Math. Phys. 38 228 (1979); Mamaev S G, Trunov N N Teor. Mat. Fiz. 38 345 (1979); Mostepanenko V M, Trunov N N Sov. Phys. Usp. 31 965 (1988); Mostepanenko V M, Trunov N N Usp. Fiz. Nauk 156 385 (1988)
  25. Grib A A, Mamayev S G, Mostepanenko V M Vacuum Quantum Effects In Strong Fields (St. Petersburg: Friedmann Laboratory Publ., 1994); Translated from Russian, Grib A A, Mamayev S G, Mostepanenko V M Vakuumnye Kvantovye Effekty V Sil’nykh Polyakh (Moscow: Energoatomizdat, 1988)
  26. Boyer T H Phys. Rev. 185 2039 (1969)
  27. Lukosz W Z. Phys. 262 327 (1973)
  28. Stueckelberg E C G Helv. Phys. Acta 14 51 (1941)
  29. Stueckelberg E C G Helv. Phys. Acta 17 43 (1944)
  30. Rivier D, Stueckelberg E C G Phys. Rev. 74 218 (1948)
  31. Schwinger J Phys. Rev. 75 651 (1949)
  32. Feynman R P Phys. Rev. 76 749 (1949)
  33. Feynman R P Phys. Rev. 76 769 (1949)
  34. Bjorken J D, Drell S D Relativistic Quantum Fields (New York: McGraw-Hill, 1965); Translated into Russian, Bjorken J D, Drell S D Relyativistskaya Kvantovaya Teoriya Vol. 2 Relyativistskie Kvantovye Polya (Moscow: Nauka, 1978)
  35. Itzykson C, Zuber J-B Quantum Field Theory (New York: McGraw-Hill International Book Co., 1980); Translated into Russian, Itzykson C, Zuber J-B Kvantovaya Teoriya Polya (Moscow: Mir, 1984)
  36. Thirring W E Principles Of Quantum Electrodynamics (New York: Academic Press, 1958); Translated into Russian, Thirring W E Printsipy Kvantovoi Elektrodinamiki (Moscow: Vysshaya Shkola, 1964)
  37. Schwinger J Phys. Rev. 115 721 (1959)
  38. Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Butterworth-Heinemann, 1994); Translated from Russian, Landau L D, Lifshitz E M Teoriya Polya (Moscow: Nauka, 1988)
  39. Schwinger J Phys. Rev. 82 664 (1951)
  40. Bialynicki-Birula I, Bialynicka-Birula Z Quantum Electrodynamics (Oxford: Pergamon Press, 1975)
  41. Dyson F J Phys. Rev. 75 486 (1949)
  42. DeWitt B S Phys. Rep. 19 295 (1975)
  43. Dwight H B Tables Of Integrals And Other Mathematical Data (New York: Macmillan, 1961); Translated into Russian, Dwight H B Tablitsy Integralov I Drugie Matematicheskie Formuly (Moscow: Nauka, 1977)
  44. Prudnikov A P, Brychkov Yu A, Marichev O I Integrals And Series Vol. 1 Elementary Functions (New York: Gordon and Breach Sci. Publ., 1986); Translated from Russian, Prudnikov A P, Brychkov Yu A, Marichev O I Integraly I Ryady: Elementarnye Funktsii (Moscow: Nauka, 1981)
  45. Casimir H B G Physica 19 846 (1953)
  46. Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1984); Translated from Russian, Landau L D, Lifshitz E M Elektrodinamika Sploshnykh Sred (Moscow: Nauka, 1982)
  47. Nikol’skii V V, Nikol’skaya T I Elektrodinamika I Rasprostranenie Radiovoln (Electrodynamics And Propagation Of Radio Waves) (Moscow: Nauka, 1989)
  48. Semenov A A Teoriya Elektromagnitnykh Voln (Theory Of Electromagnetic Waves) (Moscow: Izd. MGU, 1962)
  49. Bateman H Higher Transcendental Functions Vol. 2 (Director A Erdélyi) (New York: McGraw-Hill, 1954); Translated into Russian, Bateman H Vysshie Transtsendentnye Funktsii Vol. 3 (Moscow: Nauka, 1967)
  50. Todorov I T "Konformnaya invariantnost (Conformal invariance)" Fizicheskaya Entsiklopediya (Physical Encyclopedia) Vol. 2 (Ed.-in-Chief A M Prokhorov) (Moscow: Sovetskaya Entsiklopediya, 1990) p. 453
  51. Birrell N D, Davies P C W Quantum Fields In Curved Space (Cambridge: Cambridge Univ. Press, 1982); Translated into Russian, Birrell N D, Davies P C W Kvantovannye Polya V Iskrivlennom Prostranstve—Vremeni (Moscow: Mir, 1984)
  52. Jordan P, Pauli W (Jr.) Z. Phys. 47 151 (1928)
  53. Rivlin L A Sov. Phys. Usp. 34 259 (1991); Rivlin L A Usp. Fiz. Nauk 161 (3) 143 (1991)
  54. Rivlin L A Phys. Usp. 40 291 (1997); Rivlin L A Usp. Fiz. Nauk 167 309 (1997)
  55. Feynman R P, Leighton R B, Sands M The Feynman Lectures On Physics Vol. 2 (Reading, MA: Addison-Wesley Pub. Co., 1964); Translated into Russian, Feynman R P, Leighton R B, Sands M Feinmanovskie Lektsii Po Fizike. Issue 6 (Moscow: Mir, 1966)
  56. Feynman R P The Theory Of Fundamental Processes (New York: W.A. Benjamin, 1961); Translated into Russian, Feynman R P Teoriya Fundamental’nykh Protsessov (Moscow: Nauka, 1978)
  57. Nash C, Sen S Topology And Geometry For Physicists (London: Academic Press, 1983)
  58. Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980); Translated from Russian, Landau L D, Lifshitz E M Statisticheskaya Fizika Vol. 1 (Moscow: Nauka, 1976)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions