The main issues and areas of application of photothermal and optoacoustic spectroscopy are reviewed. Progress in innovative techniques in the most actively developing areas is presented, including microspectroscopy, multispectral techniques, the measurements of single particles and objects with a resolution better than the diffraction limit (nanoscopy) by both optical and probe-based methods. Possible applications of photothermal and optoacoustic spectroscopy for determining the properties of materials, studying photochemistry and fluorescence, chemical reactions, and analytical and applied chemistry, and solving biomedical problems is discussed. Some prospects for the development of these methods are presented.
Keywords: photothermal spectroscopy, optoacoustic spectroscopy, photoacoustic spectroscopy, photonics, nanophotonics, biophotonics, microspectroscopy, optoacoustic tomography, nanoscopy, thermal spectroscopy, remote anal„ysis and monitoring techniques, nondestructive testing, materials science, functional materials, theranostics, photochemistry, fluorescence, analytical chemistry, thermodynamics PACS:07.60.−j, 42.30.Wb, 43.35.Sx, 43.35.Ud, 78.20.nb, 78.20.N−, 78.20.Pa, 81.70.Cv, 82.80.Kq, 87.19.Pp (all) DOI:10.3367/UFNe.2021.05.038976 URL: https://ufn.ru/en/articles/2022/3/d/ 000834747900004 2-s2.0-85131117337 2022PhyU...65..270P Citation: Proskurnin M A, Khabibullin V R, Usoltseva L O, Vyrko E A, Mikheev I V, Volkov D S "Photothermal and optoacoustic spectroscopy: state of the art and prospects" Phys. Usp.65 270–312 (2022)