Issues

 / 

2022

 / 

December

  

Reviews of topical problems


Tilted fiber Bragg gratings and their sensing applications

  a,   a, §  a, b, *  a, b, c, #  a, d, e
a Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation
b Dukhov Research Institute of Automatics, ul. Sushchevskaya 22, Moscow, 119017, Russian Federation
c Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
d Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
e Chernyshevskii Saratov State University, ul. Astrakhanskaya 83, Saratov, 410071, Russian Federation

The review covers current achievements and prospects for the development of fiber sensorics associated with tilted fiber Bragg gratings (TFBGs), including metal-coated (plasmonic) sensors. The physical nature of the excitation of the cladding modes in such structures is discussed, and the main properties of TFBGs are considered. Special attention is devoted to sensing applications of TFBGs, including data processing methods for TFBG sensing systems. The process of fabricating tilted fiber Bragg gratings is described, as is the method of thin metal film deposition onto the side surface of the fiber.

Fulltext pdf (1 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.09.039070
Keywords: tilted fiber Bragg grating, optical fiber sensor, surface plasmon resonance, coupled mode theory, data processing
PACS: 07.60.Vg, 42.25.−p, 42.81.Pa (all)
DOI: 10.3367/UFNe.2021.09.039070
URL: https://ufn.ru/en/articles/2022/12/g/
001112544300006
2-s2.0-85182893138
2022PhyU...65.1290B
Citation: Butov O V, Tomyshev K A, Nechepurenko I A, Dorofeenko A V, Nikitov S A "Tilted fiber Bragg gratings and their sensing applications" Phys. Usp. 65 1290–1302 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, June 2021, revised: 16th, September 2021, 24th, September 2021

Оригинал: Бутов О В, Томышев К А, Нечепуренко И А, Дорофеенко А В, Никитов С А «Волоконные брэгговские решётки с наклонными штрихами и сенсоры на их основе» УФН 192 1385–1398 (2022); DOI: 10.3367/UFNr.2021.09.039070

References (132) ↓ Cited by (3) Similar articles (20)

  1. Kapron F P, Keck D B, Maurer R D Appl. Phys. Lett. 17 423 (1970)
  2. Gulyaev Yu et al Foton-Express (6) 114 (2005)
  3. Zheltikov A M Phys. Usp. 43 1125 (2000); Zheltikov A M Usp. Fiz. Nauk 170 1203 (2000)
  4. Zheltikov A M Phys. Usp. 50 705 (2007); Zheltikov A M Usp. Fiz. Nauk 177 737 (2007)
  5. Dianov E M, Kryukov P G Quantum Electron. 31 877 (2001); Dianov E M, Kryukov P G Kvantovaya Elektron. 31 877 (2001)
  6. Voloshin V V et al J. Commun. Technol. Electron. 54 847 (2009); Voloshin V V et al Radiotekhnika Elektron. 54 890 (2009)
  7. Popov S M et al Quantum Electron. 49 1127 (2019); Popov S M et al Kvantovaya Elektron. 49 1127 (2019)
  8. Butov O V, Dianov E M, Golant K M Meas. Sci. Technol. 17 975 (2006)
  9. Ramakrishnan M et al Sensors 16 99 (2016)
  10. Ye X W, Su Y H, Han J P Sci. World J. 2014 652329 (2014)
  11. Yatseev V A, Zotov A M, Butov O V Results Phys. 19 103485 (2020)
  12. Tomyshev K A et al Proc. SPIE 10323 103235K (2017)
  13. Dianov E M Phys. Usp. 47 1065 (2004); Dianov E M Usp. Fiz. Nauk 174 1139 (2004)
  14. Kashyap R Fiber Bragg Gratings (Burlington, MA: Academic Press, 2010)
  15. Wikszak E et al Opt. Lett. 31 2390 (2006)
  16. Bagan V A, Nikitov S A, Chamorovsky Yu K Usp. Sovrem. Radioelektron. (5) 65 (2010)
  17. Smirnov A M et al ACS Photon. 5 5038 (2018)
  18. Butov O V et al J. Opt. Soc. Am. B 34 A43 (2017)
  19. Rybaltovsky A A et al Results Phys. 16 102832 (2020)
  20. Smirnov A M, Butov O V Opt. Lett. 46 86 (2021)
  21. Nechepurenko I A, Dorofeenko A V, Butov O V Opt. Express 29 13657 (2021)
  22. Popov S M et al Results Phys. 9 806 (2018)
  23. Hill K O et al Appl. Phys. Lett. 32 647 (1978)
  24. Bragg W L Scientia 23 153 (1929)
  25. Meltz G, Morey W W, Glenn W H Opt. Lett. 14 823 (1989)
  26. Othonos A Rev. Sci. Instrum. 68 4309 (1997)
  27. Vasil’ev S A et al Quantum Electron. 35 1085 (2005); Vasil’ev S A et al Kvantovaya Elektron. 35 1085 (2005)
  28. Hill K O, Meltz G J. Lightwave Technol. 15 1263 (1997)
  29. Butov O V et al Zh. Priklad. Spektrosk. 83 (6-16) 661 (2016)
  30. Krohn D A, MacDougall T, Mendez A Fiber Optic Sensors: Fundamentals And Applications (Bellingham, WA: SPIE Press, 2014)
  31. Butov O V et al Sensors 19 4228 (2019)
  32. Butov O et al Optical Fiber Sensors. Proc. TuB6 Optical Society of America, 2006
  33. Butov O V et al Proc. SPIE 9157 (91570X) (2014)
  34. Rao Y-J Opt. Lasers Eng. 31 297 (1999)
  35. Moyo P et al Eng. Struct. 27 1828 (2005)
  36. Qiao X et al Sensors 17 429 (2017)
  37. Kinet D et al Sensors 14 7394 (2014)
  38. Ivanov O V, Nikitov S A, Gulyaev Yu V Phys. Usp. 49 167 (2006); Ivanov O V, Nikitov S A, Gulyaev Yu V Usp. Fiz. Nauk 176 175 (2006)
  39. Meltz G, Morey W, Glenn W Optical Fiber Communication Conf.. Proc. TUG1 Optical Society of America, 1990
  40. Kashyap R, Wyatt R, Campbell R Electron. Lett. 29 154 (1993)
  41. Erdogan T, Sipe J E J. Opt. Soc. Am. A 13 296 (1996)
  42. Liu Y, Zhang L, Bennion I Meas. Sci. Technol. 10 L1 (1999)
  43. Lee K S, Erdogan T Appl. Opt. 39 1394 (2000)
  44. Li Y, Froggatt M, Erdogan T J. Lightwave Technol. 19 1580 (2001)
  45. Westbrook P, Strasser T, Erdogan T IEEE Photon. Technol. Lett. 12 1352 (2000)
  46. Zhou K et al Opt. Lett. 30 1285 (2005)
  47. Mihailov S et al Electron. Lett. 37 284 (2001)
  48. Albert J, Shao L Y, Caucheteur C Laser Photon. Rev. 7 83 (2013)
  49. Caucheteur C, Guo T, Albert J Analyt. Bioanalyt. Chem. 407 3883 (2015)
  50. Caucheteur C et al Opt. Express 19 1656 (2011)
  51. Dong X et al Photon. Sensors 1 6 (2011)
  52. Chiu Y-D, Wu C-W, Chiang C-C Sensors 17 2129 (2017)
  53. Tomyshev K A et al Phys. Status Solidi A 216 1800541 (2019)
  54. Dolzhenko E I, Tomyshev K, Butov O V Proc. SPIE 11772 117720S (2021)
  55. Chan C-F et al Appl. Opt. 46 1142 (2007)
  56. Laffont G, Ferdinand P Meas. Sci. Technol. 12 765 (2001)
  57. Guo T et al Opt. Express 17 5736 (2009)
  58. Miao Y-p, Liu B Opt. Fiber Technol. 15 233 (2009)
  59. Cai Z et al Opt. Express 23 20971 (2015)
  60. Zheng J et al Opt. Commun. 312 106 (2014)
  61. Caucheteur C et al Proc. SPIE 5855 451 (2005)
  62. Giles C J. Lightwave Technol. 15 1391 (1997)
  63. Yariv A, Yeh P Optical Waves In Crystals (New York: Wiley, 1984); Translated into Russian, Yariv A, Yeh P Opticheskie Volny V Kristallakh (Moscow: Mir, 1987)
  64. Butov O V et al Opt. Commun. 213 301 (2002)
  65. Hale G M, Querry M R Appl. Opt. 12 555 (1973)
  66. Sypabekova M et al Biosensors Bioelectron. 146 111765 (2019)
  67. Miao Y et al IEEE Photon. Technol. Lett. 21 441 (2009)
  68. Dolzhenko E I, Tomyshev K, Butov O V Phys. Status Solidi RRL 14 2000435 (2020)
  69. Aldaba A L et al Sensors Actuators B 254 1087 (2018)
  70. Maier S A Plasmonics: Fundamentals And Applications (New York: Springer, 2007)
  71. Brongersma M L, Kik P G Surface Plasmon Nanophotonics (New York: Springer, 2007)
  72. Sarid D, Challener W A Modern Introduction To Surface Plasmons: Theory, Mathematica Modeling And Applications (Cambridge: Cambridge Univ. Press, 2010)
  73. Astapenko V A Elektromagnitnye Protsessy V Srede, Nanoplazmonika I Metamaterialy (Electromagnetic Processes In Matter, Nanoplasmonics And Metamaterials ) (Dolgoprudnyi: ID Intellekt, 2012)
  74. Kretschmann E, Raether H Z. Naturforschung A 23 2135 (1968)
  75. Agranovich V M, Mills D L Surface Polaritons: Electromagnetic Waves At Surfaces And Interfaces (Amsterdam: North-Holland, 1982)
  76. Raether H Surface Plasmons On Smooth And Rough Surfaces And On Gratings (Berlin: Springer, 1988)
  77. Shalaev V M, Kawata S (Eds) Nanophotonics With Surface Plasmons (Advances in Nano-Optics and Nano-Photonics) Vol. 2 (Amsterdam: Elsevier, 2007)
  78. Vinogradov A P et al Phys. Rev. B 97 235407 (2018)
  79. Homola J, Yee S S, Gauglitz G Sensors Actuators B 54 3 (1999)
  80. Homola J, Piliarik M Surface Plasmon Resonance Based Sensors (Ed. J Homola) (Berlin: Springer, 2006) p. 45
  81. Rich R L, Myszka D G J. Mol. Recognition 18 431 (2005)
  82. Naimushin A N et al Biosensors Bioelectron. 17 573 (2002)
  83. Nechepurenko I A et al Zh. Radioelektron. (4) 1 (2015); Nechepurenko I A et al http://jre.cplire.ru/jre/apr15/11/text.pdf
  84. Lin H-Y et al Sensors Actuators A 138 299 (2007)
  85. Gentleman D J, Booksh K S Talanta 68 504 (2006)
  86. Dwivedi Y S, Sharma A K, Gupta B D Plasmonics 3 79 (2008)
  87. Lin H-Y et al Opt. Express 20 21693 (2012)
  88. Navarrete M-C et al Sensors Actuators B Chemical 190 881 (2014)
  89. Verma R K, Sharma A K, Gupta B D Opt. Commun. 281 1486 (2008)
  90. Iga M, Seki A, Watanabe K Sensors Actuators B 101 368 (2004)
  91. Takagi K et al Sensors Actuators A 161 1 (2010)
  92. Lin Y et al Sensors 10 9397 (2010)
  93. Nguyen H et al Appl. Phys. Lett. 103 193116 (2013)
  94. Consales M et al ACS Nano 6 3163 (2012)
  95. Jeong H-H et al Opt. Eng. 50 124405 (2011)
  96. Sai V V R, Kundu T, Mukherji S Biosensors Bioelectron. 24 2804 (2009)
  97. Han L et al J. Lightwave Technol. 35 3360 (2017)
  98. Marquez-Cruz V, Albert J J. Lightwave Technol. 33 3363 (2015)
  99. Baiad M D et al Opt. Lett. 38 4911 (2013)
  100. Feng D et al Opt. Express 24 16456 (2016)
  101. Shao L-Y, Shevchenko Y, Albert J Opt. Express 18 11464 (2010)
  102. Shevchenko Y Y, Albert J Opt. Lett. 32 211 (2007)
  103. Caucheteur C, Voisin V, Albert J Opt. Express 21 3055 (2013)
  104. Voisin V et al Appl. Opt. 50 4257 (2011)
  105. Tomyshev K A et al J. Appl. Phys. 124 113106 (2018)
  106. Manuylovich E, Tomyshev K, Butov O V Sensors 19 4245 (2019)
  107. Tomyshev K, Tazhetdinova D, Butov O 2017 Progress in Electromagnetics Research Symp.-Spring (PIERS, 2017)
  108. Ortega-Gomez A et al Opt. Express 29 18469 (2021)
  109. Albert J et al Methods 63 239 (2013)
  110. Guo T et al Biosensors Bioelectron. 78 221 (2016)
  111. Snyder A W J. Opt. Soc. Am. 62 1267 (1972)
  112. Bialiayeu A "Tilted fibre Bragg grating sensors with resonant nano-scale coatings. Simulation of optical properties" Doctoral Thesis (München: GRIN Verlag, 2015)
  113. Chen C-L Foundations For Guided-Wave Optics (Hoboken, NJ: Wiley-Interscience, 2007)
  114. Patrick H, Gilbert S L Opt. Lett. 18 1484 (1993)
  115. Askins C G et al Opt. Lett. 19 147 (1994)
  116. Hill K O et al Appl. Phys. Lett. 62 1035 (1993)
  117. Lemaire P J et al Electron. Lett. 29 1191 (1993)
  118. Pham X et al J. Appl. Phys. 123 174501 (2018)
  119. Zhou W, Zhou Y, Albert J Laser Photon. Rev. 11 1600157 (2017)
  120. Tomyshev K et al Sensors Actuators A 308 112016 (2020)
  121. Yuan Y et al Analyt. Chem. 88 7609 (2016)
  122. Ribaut C et al Biosensors Bioelectron. 77 315 (2016)
  123. Ribaut C et al Biosensors Bioelectron. 92 449 (2017)
  124. Shevchenko Y et al Opt. Lett. 35 637 (2010)
  125. Udos W et al Optik 219 164970 (2020)
  126. Cao Y et al Appl. Spectrom. Rev. 50 499 (2015)
  127. Riboh J C et al J. Phys. Chem. B 107 1772 (2003)
  128. Lobry M et al Biomed. Opt. Express 11 4862 (2020)
  129. Leitão C et al IEEE Sensors J. 21 3028 (2020)
  130. Ricciardi A et al Analyst 140 8068 (2015)
  131. Kornienko V V et al IEEE Sensors J. 20 6954 (2020)
  132. Chubchev E D et al J. Lightwave Technol. 40 3046 (2022)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions