Issues

 / 

2022

 / 

November

  

Conferences and symposia. Forum "USPEKHI-2021": Climate change and global energy issues


Catalytic methods of converting carbon dioxide into useful products to reduce the impact of coal generation on global climate change

  a,  , § 
a Federal Research Center for Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, prosp. Sovetskii, 18, Kemerovo, Kemerovo Region, 650000, Russian Federation

Coal generation is one of the main sources of carbon dioxide emissions and makes a significant contribution to global climate change. In general, to curb global warming and to transition to a carbon-neutral economy, it is urgent to develop and improve methods for capturing and utilizing carbon dioxide. The most promising processing methods are those of catalytic conversion of CO2 into valuable chemical products. This article discusses methods of CO2 utilization, including synthesis reactions of low-molecular compounds (HCOOH, CO, H2CO, CH3OH, CH4) and reactions to obtain high-molecular organic substances (carbamates RR'NCOOR'', carbonates (RO)2CO, carboxylates RCOOH). The results of research on the creation of a number of effective nanosized catalysts for these processes are presented.

Fulltext pdf (1.9 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.07.039084
Keywords: coal generation, climate, carbon dioxide, CO2 conversion, catalysis, chemical products
PACS: 82.30.Vy, 92.30.Np, 92.70.Mn (all)
DOI: 10.3367/UFNe.2021.07.039084
URL: https://ufn.ru/en/articles/2022/11/f/
001100185900002
2-s2.0-85182902686
Citation: Ismagilov Z R, Matus E V, Li L "Catalytic methods of converting carbon dioxide into useful products to reduce the impact of coal generation on global climate change" Phys. Usp. 65 1139–1154 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, May 2021, 7th, July 2021

Оригинал: Исмагилов З Р, Матус Е В, Ли Л «Каталитические методы переработки углекислого газа в полезные продукты для снижения влияния угольной генерации на глобальные климатические изменения» УФН 192 1214–1230 (2022); DOI: 10.3367/UFNr.2021.07.039084

References (112) ↓ Cited by (1) Similar articles (4)

  1. Arutyunov V S Neft’ XXI. Mify I Real’nost’ Al’ternativnoi Energetiki (Oil XXI. Myths And Reality Of Alternative Energy ) (Moscow: Algoritm, 2016)
  2. Hepburn C et al Nature 575 87 (2019)
  3. Mikkelsen M, Jørgensen M, Krebs F C Energy Environ. Sci. 3 43 (2010)
  4. Goeppert A et al Chem. Soc. Rev. 43 7995 (2014)
  5. Erneuerbare-Energien-und-Klimaschutz.de, Specific Carbon Dioxide Emissions of Various Fuels, Specif. Carbon Dioxide Emiss. Var. Fuels. (2015, accessed 15 May 2019), https://www.volker-quaschning.de/datserv/CO2-spez/index_e.php
  6. Makarov A A, Mitrova T A, Kulagin V A (Eds) Prognoz Razvitiya Energetiki Mira I Rossii (Forecast Of The Development Of The Energy Industry In The World And Russia) (Mos cow: INEI RAN, Moskovskaya Shkola Upravleniya SKOLKOVO, 2019)
  7. Khokhlov A, Melnikov Yu Ugol’naya Generatsiya: Novye Vyzovy I Vozmozhnosti (Coal Generation: New Challenges And Opportunities ) (Moscow: Tsentr Energetiki MShU SKOLKOVO, 2019); Electronic resource (accessed 21 April 2021), https://energy.skolkovo.ru/downloads/documents/SEneC/Research/SKOLKOVO_EneC_Coal_generation_ 2019.01.01_Rus.pdf
  8. Russell A T Air Pollution And Cancer (IARC Scientific Publ.) Vol. 161 (Eds K Straif, A Cohen, J Samet) (Lyon: Intern. Agency for Research on Cancer, 2013) p. 37
  9. Engineering ToolBox. Combustion of Fuels - Carbon Dioxide Emission, Electronic resource (accessed 11 March 2021), https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html%0A; https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html
  10. Gimani G et al Energ. Byull. (72) (2019)
  11. Smirnov B M High Temp. 57 573 (2019); Smirnov B M Teplofiz. Vys. Temp. 57 609 (2019)
  12. Archer D Global Warming. Understanding The Forecast (Hoboken, NJ: John Wiley and Sons, 2011)
  13. Yang H et al J. Environ. Sci. 20 14 (2008)
  14. Alper E, Orhan O Y Petroleum 3 109 (2017)
  15. Energoeffektivnaya Rossiya (Energy Efficient Russia) (McKinsey and Co., 2009)
  16. Olajire A A J. Petroleum Sci. Eng. 109 364 (2013)
  17. Qin A et al ACS Sustain. Chem. Eng. 7 4523 (2019)
  18. Zhang Y et al J. Mater. Chem. A 7 7962 (2019)
  19. Sun Y et al J. Mater. Chem. A 6 23587 (2018)
  20. Zhao H et al J. 44 101415 (2021)
  21. Wang Q et al Energy Environ. Sci. 4 42 (2011)
  22. Bazzanella A, Krämer D Technologies For Sustainability And Climate Protection — Chemical Processes And Use Of CO2 (Frankfurt: DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., 2019)
  23. Heltzel J M Chem. Commun. 54 6184 (2018)
  24. Bobbink F D, Van Muyden A P, Dyson P J Chem. Commun. 55 1360 (2019)
  25. Ho H J, Iizuka A, Shibata E Ind. Eng. Chem. Res. 58 8941 (2019)
  26. Sels B, Van de Voorde M Applications In The Chemical Industry, Energy Development, And Environment Protection (Weinheim: Wiley-VCH Verlag GmbH and Co, 2017)
  27. He M, Sun Y, Han B Angew. Chem. Int. Ed. 52 9620 (2013)
  28. de Falco M, Iaquaniello G, Centi G CO2: A Valuable Source Of Carbon (London: Springer, 2013)
  29. Aresta M, Dibenedetto A, Angelini A Chem. Rev. 114 1709 (2014)
  30. North M, Styring P Faraday Discuss. 183 489 (2015)
  31. Gazokhimicheskii zavod. Proizvodstvo karbamida (Gas chemical plant. Carbamide production). Electronic resource (accessed 21 April 2021), https://salavat-neftekhim.gazprom.ru/about/working/applying/
  32. ’Akron’ zapustil novyi agregat po proizvodstvu karbamida (Akron launched a new carbamide production unit). Electronic resource. (assesses 21 April 2021), https://53news.ru/novosti/44364-akron-zapustil-novyj-agregat-po-proizvodstvu-karbamida.html
  33. ’Akron’ aktiviziruyet raboty po proektu ’Karbamid 6+’ (Akron intensifies work on the Urea 6+ project), Electronic resource (accessed 21 April 2021), http://rccnews.ru/news/fertilizers/104661/
  34. Jarvis S M, Samsatli S Renew. Sustain. Energy Rev. 85 46 (2018)
  35. Chen C et al Nat. Chem. 12 46 (2020)
  36. Ren S et al Fuel 239 1125 (2019)
  37. Dang S et al Catal. Today 330 61 (2019)
  38. Arena F et al Appl. Catal. A Gen. 350 16 (2008)
  39. Sun Y et al Catal. Today 307 212 (2018)
  40. AIR TO FUELSTM PLANTS, Electronic resource (accessed 21 April 2021), https://carbonengineering.com/our-technology
  41. Yan N, Philippot K Curr. Opin. Chem. Eng. 20 86 (2018)
  42. Park H Chem. Commun. 52 14302 (2016)
  43. Nguyen L T M et al RSC Adv. 5 105560 (2015)
  44. Lee J H et al J. Mater. Chem. A 2 9490 (2014)
  45. Mori K, Taga T, Yamashita H ACS Catal. 7 3147 (2017)
  46. Qin Z Z et al Catal. Commun. 75 78 (2016)
  47. Tsiotsias A I et al Nanomaterials 11 28 (2021)
  48. Veselovskaya J V, Parunin P D, Okunev A G Catal. Today 298 177 (2017)
  49. Thalinger R et al J. Catal. 337 26 (2016)
  50. Arandiyan H et al ACS Appl. Mater. Interfaces 10 16352 (2018)
  51. Golosman E Z, Efremov, V N Catal. Ind. 4 267 (2012); Golosman E Z, Efremov, V N Kataliz Promyshl. 5 36 (2012)
  52. Audi opens power-to-gas facility in Werlte/Emsland; e-gas from water, green electricity and CO2, Electronic resource (accessed 11 March 2021), https://www.greencarcongress.com/2013/06/audi-20130625.html
  53. Wei J et al Nat. Commun. 8 15174 (2017)
  54. Chen J et al Fuel 239 44 (2019)
  55. Wang J J. CO2 Util. 27 81 (2018)
  56. Ateka A et al Fuel Process. Technol. 181 233 (2018)
  57. Dang S et al J. Catal. 364 382 (2018)
  58. Rahman S T et al Catalysts 10 1 (2020)
  59. Cai X, Hu Y H Energy Sci. Eng. 7 4 (2019)
  60. Li G et al Green Chem. 23 689 (2021)
  61. Zhang R et al ACS Catal. 8 9280 (2018)
  62. Rabie A M, Betiha M A, Park S E Appl. Catal. B Environ. 215 50 (2017)
  63. Nedolivko V V et al Russ. J. Appl. Chem. 93 765 (2020); Nedolivko V V et al Zh. Prikladn. Khim. 93 763 (2020)
  64. Jang W J et al Catal. Today 324 15 (2019)
  65. Krylov O V Ros. Khim. Zh. 44 19 (2020)
  66. Zubenko D, Singh S, Rosen B A Appl. Catal. B 209 711 (2017)
  67. Matus E V Kinet. Catal. 60 221 (2019); Matus E V Kinetika Kataliz 60 245 (2019)
  68. Matus E V Kinet. Catal. 60 496 (2019); Matus E V Kinetika Kataliz 60 532 (2019)
  69. Matus E B Int. J. Hydrogen Energy 45 33352 (2020)
  70. Ismagilov I Z et al Appl. Catal. A 481 104 (2014)
  71. Kerzhentsev M A et al Kinet. Catal. 58 601 (2017); Kerzhentsev M A et al Kinetika Kataliz 58 614 (2017)
  72. Ligthart D A J M, Pieterse J A Z, Hensen E J M Appl. Catal. A 405 108 (2011)
  73. Hou Z et al Appl. Surf. Sci. 233 58 (2004)
  74. Ismagilov I Z et al Kinet. Catal. 56 397 (2015); Ismagilov I Z et al Kinetika Kataliz 56 394 (2015)
  75. Matus E V Kinet. Catal. 58 610 (2017); Matus E V Kinetika Kataliz 58 623 (2017)
  76. Ismagilov I Z at al. Int. J. Hydrogen Energy 39 20992 (2014)
  77. de Abreu A J, Lucrédio A F, Assaf E M Fuel Process. Technol. 102 140 (2012)
  78. Matus E V et al J. Nanoparticle Res. 21 11 (2019)
  79. Ismagilov I Z Eurasian Chem. J. 19 3 (2017)
  80. Zhang L et al J. Mol. Catal. A 297 26 (2009)
  81. Smaller carbon footprint. Higher process efficiency, Electronic resource (accessed 21 April 2021), https://www.engineering.linde.com/dryref
  82. Chen Q et al J. Saudi Chem. Soc. 23 111 (2019)
  83. Li Z et al Joule 3 570 (2019)
  84. Zhang X et al J. CO2 Util. 29 140 (2019)
  85. Ye S et al Adv. Ind. Eng. Polym. Res. 2 143 (2019)
  86. Geschwind J, Frey H Macromolecules 46 3280 (2013)
  87. Li X et al J. CO2 Util. 26 52 (2018)
  88. Middelkoop V et al J. Clean. Prod. 214 606 (2019)
  89. Matus et al J. Phys. Conf. Ser. 1749 012023 (2021)
  90. Pashchenko D Int. J. Energy Res. 44 438 (2020)
  91. Singh S et al Int. J. Hydrogen Energy. 43 17230 (2018)
  92. Rostrup-Nielsen J R, Sehested J, Noerskov J K Adv. Catal. 47 65 (2002)
  93. Yagi F et al Stud. Surf. Sci. Catal. 147 127 (2004)
  94. Yagi F et al Catal. Today 104 (1) 2 (2005)
  95. Usachev N Ya et al Ros. Khim. Zh. 52 22 (2008)
  96. De S et al Energy Environ. Sci. 9 3314 (2016)
  97. Horn R, Schlögl R Catal. Lett. 145 23 (2015)
  98. Ismagilov Z R et al Catal. Today 323 166 (2019)
  99. Aramouni N A K et al Energy Convers. Manag. 150 614 (2017)
  100. Sehested J, Gelten J A P, Helveg S Appl. Catal. A 309 237 (2006)
  101. Bengaard H S et al J. Catal. 209 265 (2002)
  102. Mullins D R Surf. Sci. Rep. 70 42 (2015)
  103. Rodriguez J A et al Chem. Soc. Rev. 46 1824 (2017)
  104. Bruix A, Neyman K M Catal. Lett. 146 2053 (2016)
  105. Matus E V et al J. Struct. Chem. 61 1080 (2020); Matus E V et al Zh. Strukt. Khim. 61 1143 (2020)
  106. Kim J H et al ACS Nano 15 81 (2021)
  107. Li D et al Int. J. Hydrogen Energy 39 10959 (2014)
  108. Hernández W Y et al Green Chem. 19 5269 (2017)
  109. Fuentes R O et al RSC Adv. 6 64861 (2016)
  110. Kwon O et al J. Phys. Energy 2 032001 (2020)
  111. Misture S T et al Catal. Sci. Technol. 5 4565 (2015)
  112. Jabbour K J. Energy Chem. 48 54 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions