Issues

 / 

2021

 / 

August

  

Instruments and methods of investigation


Uncertainty relation for modulated broadband laser pulses

  a,   a, §  b
a National University of Science and Technology "MISIS", Leninskii prosp. 4, Moscow, 119049, Russian Federation
b Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

The shaping of picosecond laser pulses with complicated amplitude and phase modulations is applied in various problems concerning the interaction of radiation with matter. Such pulses are generated by modulating femtosecond laser pulses with the help of programmable spectral filters with a complex transmission function based on spatial light modulators or acousto-optic dispersion delay lines. It is shown that the number of resolved elements and their contrast upon modulating chirped laser pulses satisfy the uncertainty relation, and the optimal bandwidth of the filter is twice the frequency range of the laser pulse. The results are experimentally confirmed for a femtosecond Ti:Sapphire laser with a high-resolution dispersion delay line.

Fulltext pdf (707 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.06.038793
Keywords: femtosecond laser pulse, pulse shaper, dispersion delay line, acousto-optic diffraction, uncertainty relation
PACS: 42.65.Re, 42.79.Jq (all)
DOI: 10.3367/UFNe.2020.06.038793
URL: https://ufn.ru/en/articles/2021/8/d/
000711503200004
2-s2.0-85098639061
2021PhyU...64..828Y
Citation: Yushkov K B, Molchanov V Ya, Khazanov E A "Uncertainty relation for modulated broadband laser pulses" Phys. Usp. 64 828–835 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, June 2020, 22nd, June 2020

Оригинал: Юшков К Б, Молчанов В Я, Хазанов Е А «Соотношение неопределённости для модулированных широкополосных лазерных импульсов» УФН 191 874–881 (2021); DOI: 10.3367/UFNr.2020.06.038793

References (43) ↓ Cited by (7) Similar articles (7)

  1. Gabor D J. Inst. Electr. Eng. Pt. III Radio Commun. Eng. 93 429 (1946)
  2. Max J Méthodes Et Techniques De Traitment Du Signal Et Applications Aux Mesures Physiques (Paris: Masson, 1981); Per. na russk. yaz., Maks Zh Metody i Tekhnika Obrabotki Signalov pri Fizicheskikh Izmereniyakh (M.: Mir, 1983)
  3. Akhmanov S A, Vysloukh V A, Chirkin A S Optika Femtosekundnykh Lazernykh Impul’sov (M.: Nauka, 1988); Per. na angl. yaz., Akhmanov S A, Vysloukh V A, Chirkin A S Optics Of Femtosecond Laser Pulses (New York: American Institute of Physics, 1992)
  4. Weiner A M Ultrafast Optics (New York: Wiley, 2009)
  5. Gus’kov S Yu Fizika Plazmy 39 3 (2013); Gus’kov S Yu Plasma Phys. Rep. 39 1 (2013)
  6. Atzeni S et al New J. Phys. 15 045004 (2013)
  7. Bel’kov S A et al Plasma Phys. Control. Fusion 61 025011 (2019)
  8. Mironov S Yu i dr Usp. Fiz. Nauk 187 1121 (2017); Mironov S Yu et al Phys. Usp. 60 1039 (2017)
  9. Kuzmin I et al Laser Phys. Lett. 16 015001 (2019)
  10. Ahn J et al Opt. Express 11 2486 (2003)
  11. Ovchinnikov A V i dr Kvantovaya Elektronika 46 1149 (2016); Ovchinnikov A V et al Quantum Electron. 46 1149 (2016)
  12. Burkhart S C et al Proc. SPIE 2633 48 (1995)
  13. Weiner A M Rev. Sci. Instrum. 71 1929 (2000)
  14. Albright B J, Yin L, Afeyan B Phys. Rev. Lett. 113 045002 (2014)
  15. Yushkov K B et al Phys. Rev. A 96 043866 (2017)
  16. Yushkov K B, Molchanov V Ya IEEE J. Sel. Top. Quantum Electron. 26 8700108 (2020)
  17. Mazurenko Yu T Opt. Spektr. 57 583 (1984); Mazurenko Yu T Opt. Spectrosc. 57 357 (1984)
  18. Weiner A M, Heritage J P, Kirschner E M J. Opt. Soc. Am. B 5 1563 (1988)
  19. Gu C et al Opt. Lett. 40 4018 (2015)
  20. Dugan M A, Tull J X, Warren W S J. Opt. Soc. Am. B 14 2348 (1997)
  21. Ghosh A et al Opt. Lett. 41 524 (2016)
  22. Dinda S, Bandyopadhyay S N, Goswami D OSA Continuum 2 1386 (2019)
  23. Pozhar V E, Pustovoit V I Kvantovaya Elektronika 14 811 (1987); Pozhar V E, Pustovoit V I Sov. J. Quantum Electron. 17 509 (1987)
  24. Fermann M E et al Opt. Lett. 18 1505 (1993)
  25. Verluise F et al J. Opt. Soc. Am. B 17 138 (2000)
  26. Gao L, Herriot S I, Wagner K H IEEE J. Sel. Top. Quantum Electron. 12 315 (2006)
  27. Molchanov V Ya et al Appl. Opt. 48 C118 (2009)
  28. Molchanov V Ya i dr Teoriya i Praktika Sovremennoi Akustooptiki (M.: MISiS, 2015)
  29. Molchanov V Ya, Voloshinov V B, Makarov O Yu Kvantovaya Elektronika 39 353 (2009); Molchanov V Ya, Voloshinov V B, Makarov O Yu Quantum Electron. 39 353 (2009)
  30. Glebov L B et al Opt. Eng. 53 051514 (2014)
  31. Antipov S et al Opt. Express 24 30 (2016)
  32. Yariv A, Yeh P Optical Waves In Crystals (New York: Wiley, 1984); Per. na russk. yaz., Yariv A, Yukh P Opticheskie Volny v Kristallakh (M.: Mir, 1987)
  33. Yushkov K B, Molchanov V Ya Opt. Lett. 38 3578 (2013)
  34. Dorrer C, Salin F IEEE J. Sel. Top. Quantum Electron. 4 342 (1998)
  35. Pestov D, Lozovoy V V, Dantus M Opt. Express 17 14351 (2009)
  36. Molchanov V Ya, Makarov O Yu Opt. Eng. 38 1127 (1999)
  37. Yushkov K B et al IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 1040 (2020)
  38. Didenko N V i dr Kvantovaya Elektronika 45 1101 (2015); Didenko N V et al Quantum Electron. 45 1101 (2015)
  39. Molchanov V Ya, Yushkov K B Opt. Express 22 15668 (2014)
  40. Voloshinov V B i dr Pis’ma ZhTF 18 (2) 33 (1992); Voloshinov V B et al Sov. Tech. Phys. Lett. 18 (2) 33 (1992)
  41. Molchanov V Ya, Chizhikov S I, Makarov O Yu (Paris: Société Francais d’Acoustique, 2008) p. 827
  42. Mantsevich S N et al Ultrasonics 78 175 (2017)
  43. Yushkov K B, Makarov O Yu, Molchanov V Ya Opt. Lett. 44 1500 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions