Issues

 / 

2021

 / 

March

  

Instruments and methods of investigation


Undulator and free-electron laser radiation with field harmonics and off-axis effects taken into account analytically


Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

We present an analytic description of the generation of undulator radiation (UR) harmonics in a generalized elliptic undulator with field harmonics. The obtained analytic expressions for generalized Bessel and Airy functions describe the UR spectral lines and radiation intensity in the general and particular cases of two-frequency planar and helical undulators and also for other elliptic and planar undulators. We analytically describe the effect of finite electron beam size, beam emittance, off-axis deflection of electrons, electron energy spread, and beam-bending permanent magnetic components. The obtained analytic expressions distinguish the contributions made by each field component and by the beam and undulator parameters to the generation of radiation harmonics. Using an analytic model of single-pass free-electron lasers (FELs), we analyze the power evolution of harmonics in the LCLS, LEUTL, and SACLA FEL experiments. We discuss the effect that the beam and undulator parameters have on the generation of harmonics. It is shown that the strong second harmonics of radiation observed in experiments are caused by the detected beam deviation from the axis by 15 μm over one gain length of 1.5 m in the X-ray LCLS FEL and by the large beam cross section of ∼ 200 μm in the LEUTL FEL. The results of modeling are fully consistent with experiments, which confirms the validity of the presented theoretical description of FEL power and radiation spectral density.

Fulltext is available at IOP
Keywords: undulator, magnetic field, free-electron laser, harmonic generation
PACS: 41.60.−m, 41.60.Ap, 41.60.Cr (all)
DOI: 10.3367/UFNe.2020.06.038803
URL: https://ufn.ru/en/articles/2021/3/d/
Citation: Zhukovsky K V "Undulator and free-electron laser radiation with field harmonics and off-axis effects taken into account analytically" Phys. Usp. 64 304–316 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, December 2019, revised: 2nd, April 2020, 29th, June 2020

Оригинал: Жуковский К В «Излучение ондуляторов и лазеров на свободных электронах с аналитическим учётом гармоник поля и внеосевых эффектов» УФН 191 318–330 (2021); DOI: 10.3367/UFNr.2020.06.038803

References (64) ↓ Cited by (6) Similar articles (10)

  1. Ginzburg V L Izv. AN SSSR Ser. Fiz. 11 165 (1947)
  2. Motz H, Thon W, Whitehurst R N J. Appl. Phys. 24 826 (1953)
  3. McNeil B W J, Thompson N R Nat. Photon. 4 814 (2010)
  4. Pellegrini C, Marinelli A, Reiche S Rev. Mod. Phys. 88 015006 (2016)
  5. Schmüser P et al Free-Electron Lasers In The Ultraviolet And X-Ray Regime. Physical Principles, Experimental Results, Technical Realization (Springer Tracts in Modern Physics) Vol. 258 (Cham: Springer, 2014)
  6. Huang Z, Kim K-J Phys. Rev. ST Accel. Beams 10 034801 (2007)
  7. Margaritondo G, Ribic P R J. Synchrotron Rad. 18 101 (2011)
  8. Margaritondo G Riv. Nuovo Cimento 40 411 (2017)
  9. Bordovitsyn V A (Ed.) Synchrotron Radiation Theory And Its Development In Memory Of I.M. Ternov (World Scientific Series on Synchrotron Radiation Techniques and Applications) Vol. 5 (Singapore: World Scientific, 1999)
  10. Margaritondo G Synchrotron Radiation. Basics, Methods And Applications (Eds S Mobilio, F Boscherini, C Meneghini) (Berlin: Springer, 2015) p. 29
  11. Placzek W et al Acta Phys. Pol. B 50 1191 (2019)
  12. Saldin E L, Schneidmiller E A, Yurkov M V The Physics Of Free Electron Lasers (Berlin: Springer, 2000)
  13. Bonifacio R, Pellegrini C, Narducci L Opt. Commun. 50 373 (1984)
  14. Nakao N et al Nucl. Instrum. Meth. Phys. Res. A 407 374 (1998)
  15. Sharma G, Mishra G, Gehlot M JINST T01002 (2014)
  16. Bazouband F, Maraghechi B J. Plasma Phys. 81 905810305 (2015)
  17. Asakawa M et al Nucl. Instrum. Meth. Phys. Res. A 318 538 (1992)
  18. Asakawa M et al Nucl. Instrum. Meth. Phys. Res. A 358 399 (1995)
  19. Asakawa M et al Nucl. Instrum. Meth. Phys. Res. A 375 416 (1996)
  20. Iracane D, Bamas P Phys. Rev. Lett. 67 3086 (1991)
  21. Halbach K J. Phys. Colloques 44 C1-211 (1983)
  22. Halbach K J. Appl. Phys. 57 3605 (1985)
  23. Prakash B et al Optik 127 1639 (2016)
  24. Huse V et al Chin. Phys. Lett. 31 034101 (2014)
  25. Lee K et al Nucl. Instrum. Meth. Phys. Res. A 776 27 (2015)
  26. Jeevakhan H, Mishra G Nucl. Instrum. Meth. Phys. Res. A 656 101 (2011)
  27. Gupta V, Mishra G Nucl. Instrum. Meth. Phys. Res. A 574 150 (2007)
  28. Gupta V, Mishra G Nucl. Instrum. Meth. Phys. Res. A 556 350 (2006)
  29. Yang Y, Ding W Phys. Plasmas 5 782 (1998)
  30. Schmidt T et al Proc. of the 36th Intern. Free Electron Laser Conf., FEL 2014, Basel, Switzerland, 25 - 29 August 2014 (Editorial Board: J Chrin, S Reiche, V R W Schaa) (Basel: JACoW, 2015) p. 116; http://accelconf.web.cern.ch/AccelConf/FEL2014/papers/mop043.pdf
  31. Temnykh A B Phys. Rev. ST Accel. Beams 11 120702 (2008)
  32. Nuhn H-D et al Proc. Of The 37th Intern. Free Electron Laser Conf., FEL 2015, Daejeon, Korea, 23 - 28 August 2015 (Editorial Board: H S Kang, D-E Kim, V R W Schaa) (Daejeon: JACoW, 2015) p. 757; http://accelconf.web.cern.ch/FEL2015/papers/wed01.pdf
  33. Henderson J R et al New J. Phys. 18 062003 (2016)
  34. Emma P Proc. of the 23rd Particle Accelerator Conf. 4 - 8 May 2009, Vancouver, British Columbia, Canada (Vancouver: TRIUMF, 2010) p. 3115; http://accelconf.web.cern.ch/PAC2009/papers/th3pbi01.pdf
  35. Emma P et al Nat. Photon. 4 641 (2010)
  36. Ratner D et al Phys. Rev. ST Accel. Beams 14 060701 (2011)
  37. Milton S V et al Science 292 2037 (2001)
  38. Biedron S G et al Nucl. Instrum. Meth. Phys. Res. A 483 94 (2002)
  39. Alferov D F, Bashmakov Yu A, Bessonov E G Zh. Tekh. Fiz. 43 2126 (1973); Alferov D F, Bashmakov Yu A, Bessonov E G Sov. Phys. Tech. Phys. 18 1336 (1974)
  40. Alferov D F, Bashmakov Yu A, Cherenkov P A Usp. Fiz. Nauk 157 389 (1989); Alferov D F, Bashmakov Yu A, Cherenkov P A Sov. Phys. Usp. 32 200 (1989)
  41. Bagrov V G i dr Teoriya Izlucheniya Relyativistskikh Chastits (Pod red. V A Bordovitsyna) (M.: Fizmatlit, 2002)
  42. Bagrov V G, Ternov I M, Kholomai B V Izluchenie Relyativistskikh Elektronov v Prodol’nom Periodicheskom Elektricheskom Pole Kristalla (Tomsk: TF SO AN SSSR, 1987)
  43. Dattoli G, Mikhailin V V, Ottaviani P L, Zhukovsky K V J. Appl. Phys. 100 084507 (2006)
  44. Vinokurov N A, Levichev E B Usp. Fiz. Nauk 185 917 (2015); Vinokurov N A, Levichev E B Phys. Usp. 58 850 (2015)
  45. Bessonov E G "K teorii istochnikov ondulyatornogo izlucheniya" Preprint №18 (M.: FIAN SSSR, 1982)
  46. Alekseev V I, Bessonov E G Trudy VI Vsesoyuznogo soveshchaniya po ispol’zovaniyu sinkhrotronnogo izlucheniya "SI-84" (Novosibirsk: IYaF SO AN SSSR, 1985) p. 92
  47. Cherenkov P A (Otv. red.) Ondulyatornoe Izluchenie, Lazery na Svobodnykh Elektronakh (Trudy FIA) Vol. 214 (M.: Nauka, 1993); http://proceedings.lebedev.ru/0214-1993/
  48. Bessonov E G Nucl. Instrum. Meth. Phys. Res. A 282 405 (1989)
  49. Alekseev V I, Bessonov E G Nucl. Instrum. Meth. Phys. Res. A 308 140 (1991)
  50. Kalitenko A M, Zhukovskii K V Zh. Eksp. Teor. Fiz. 157 394 (2020); Kalitenko A M, Zhukovskii K V J. Exp. Theor. Phys. 130 327 (2020)
  51. Zhukovsky K Results Phys. 13 102248 (2019)
  52. Zhukovsky K J. Synchrotron Rad. 26 1481 (2019)
  53. Jeevakhan H, Mishra G Opt. Commun. 335 126 (2015)
  54. Zhukovsky K J. Electromagn. Waves Appl. 28 1869 (2014)
  55. Zhukovsky K V Prog. Electromagn. Res. B 59 245 (2014)
  56. Gould H W, Hopper A T Duke Math. J. 29 51 (1962)
  57. Dattoli G, Renieri A, Torre A Lectures On The Free Electron Laser Theory And Related Topics (Singapore: World Scientific, 1993)
  58. Dattoli G J. Appl. Phys. 84 2393 (1998)
  59. Dattoli G, Ottaviani P L Opt. Commun. 204 283 (2002)
  60. Dattoli G, Ottaviani P L, Pagnutti S "Booklet for FEL desing: a collection of practical formulae" ENEA Report RT/2007/40/FIM (2007)
  61. Inoue I et al Nat. Photon. 13 319 (2019)
  62. Zhukovsky K Results Phys. 19 103361 (2020)
  63. Zhukovsky K Symmetry 12 1258 (2020)
  64. Zhukovsky K J. Synchrotron Rad. 27 1648 (2020)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions