Issues

 / 

2021

 / 

February

  

Instruments and methods of investigation


Modeling of transient luminous events in Earth's middle atmosphere with apokamp discharge

 a,  b,  a,  a,  c,  a,  a,  a
a Institute of High-Current Electronics, Siberian Branch of the Russian Academy of Sciences, Akademicheskii prosp. 4, Tomsk, 634055, Russian Federation
b Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
c Institute for High Temperatures, Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

We describe the recently discovered phenomenon of the formation of an extended luminous structure at the bend of the channel of a high-voltage pulse discharge. It is called the apokamp (from the Greek words απó — 'from' and κάμπ&eta — 'bend'), and the discharge as a whole is referred to as apokampic. In the course of experimental and theoretical studies, it is shown that the apokamp is a narrow streamer channel that propagates at a characteristic speed of tens to hundreds of km/s, depending on the applied voltage, pressure, and gas type. The necessary conditions for apokamp formation are established. The apokamp discharge is used for laboratory studies of conditions for the formation of blue jets and red sprites — large-scale transient luminous events (transients) observed in Earth's atmosphere above areas with thunderstorm activity. The revealed signs of similarity between apokamps and blue jets are described. The proposed experimental setup can also be used for meaningful testing of hypotheses about the conditions of formation of transients in Earth's atmosphere and in the atmospheres of other planets.

Fulltext pdf (1000 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.03.038735
Keywords: apokamp, apokamp discharge, blue jets, red sprites, middle atmosphere of Earth, transient luminous events
PACS: 07.05.Tp, 52.80.Mg, 52.90.+z, 92.60.Pw (all)
DOI: 10.3367/UFNe.2020.03.038735
URL: https://ufn.ru/en/articles/2021/2/e/
000644699500005
2-s2.0-85105633203
2021PhyU...64..191S
Citation: Sosnin E A, Babaeva N Yu, Kozhevnikov V Yu, Kozyrev A V, Naidis G V, Panarin V A, Skakun V S, Tarasenko V F "Modeling of transient luminous events in Earth's middle atmosphere with apokamp discharge" Phys. Usp. 64 191–210 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, February 2020, revised: 2nd, March 2020, 12th, March 2020

Оригинал: Соснин Э А, Бабаева Н Ю, Кожевников В Ю, Козырев А В, Найдис Г В, Панарин В А, Скакун В С, Тарасенко В Ф «Моделирование транзиентных световых явлений средней атмосферы Земли c помощью апокампического разряда» УФН 191 199–219 (2021); DOI: 10.3367/UFNr.2020.03.038735

References (119) ↓ Cited by (12) Similar articles (3)

  1. Neubert T Science 300 747 (2003)
  2. Neubert T et al Surv. Geophys. 29 71 (2008)
  3. Chen A B et al J. Geophys. Res. 113 A08306 (2008)
  4. Mishin E V, Milikh G M Space Sci. Rev. 137 473 (2008)
  5. Bekryaev V I Molnii, Spraity i Dzhety (SPb.: RGGMU, 2009)
  6. Donchenko V A i dr Elektroopticheskie Yavleniya v Atmosfere (Tomsk: Izd-vo NTL, 2015)
  7. Chanrion O et al Geophys. Res. Lett. 44 496 (2017)
  8. Siingh D et al J. Atmos. Solar-Terr. Phys. 134 78 (2015)
  9. Suzuki T et al J. Geophys. Res. 117 A07307 (2012)
  10. Wescott E M et al Geophys. Res. Lett. 22 1209 (1995)
  11. Sentman D D, Wescott E M Geophys. Res. Lett. 20 2857 (1993)
  12. Chern R J-S, Lin S-F, Wu A-M Acta Astronautica 112 37 (2015)
  13. Sadovnichii V A i dr Astron. Vestn. 45 5 (2011); Sadovnichy V A et al Solar Syst. Res. 45 3 (2011)
  14. Williams E R Atmos. Res. 91 140 (2009)
  15. Peterson H et al J. Geophys. Res. 114 A00E07 (2009)
  16. Surkov V V, Hayakawa M Ann. Geophys. 30 1185 (2012)
  17. Sosnin E A i dr Pis’ma ZhETF 103 857 (2016); Sosni E A et al. JETP Lett. 103 761 (2016)
  18. Skakun V S i dr Izv. Vuzov. Fizika (5) 92 (2016); Skakun V S et al Russ. Phys. J. 59 707 (2016)
  19. Franz R C, Nemzek R J, Winckler J R Science 249 48 (1990)
  20. MacKenzie T Nature 33 245 (1886)
  21. Everett J D Nature 68 599 (1903)
  22. Boys C V Nature 118 749 (1926)
  23. Malan D C.R. Acad. Sci. Paris 205 812 (1937)
  24. Wilson C T R Proc. Phys. Soc. London 37 32D (1924)
  25. Vaughan O H (Jr.), Vonnegut B J. Geophys. Res. 94 13179 (1989)
  26. Lyons W A Geophys. Res. Lett. 21 875 (1994)
  27. Lyons W A et al Eos Trans. AGU 81 373 (2000)
  28. van der Velde O A et al J. Geophys. Res. 112 D20104 (2007)
  29. Wescott E M et al J. Atmos. Solar-Terr. Phys. 60 713 (1998)
  30. Wescott E M et al Geophys. Res. Lett. 23 2153 (1996)
  31. Edens H E Geophys. Res. Lett. 38 L17804 (2011)
  32. Wescott E M et al J. Geophys. Res. 106 21549 (2001)
  33. McHarg M G et al J. Geophys. Res. 107 1364 (2002)
  34. Gerken E A, Inan U S J. Geophys. Res. 107 1344 (2002)
  35. Kosar B C, Liu N, Rassoul H K J. Geophys. Res. 117 A08328 (2012)
  36. Barrington-Leigh C P, Inan U S, Stanley M J. Geophys. Res. 106 1741 (2001)
  37. Mende S B et al Geophys. Res. Lett. 22 2633 (1995)
  38. Hampton D L et al Geophys. Res. Lett. 23 89 (1996)
  39. Valdivia J A, Milikh G, Papadopoulos K Geophys. Res. Lett. 24 3169 (1997)
  40. Mende S B et al Sprites, Elves And Intense Lightning Discharges (NATO Science Ser. II) Vol. 225 (Eds M Füllekrug, E A Mareev, M J Rycroft) (Dordrecht: Springer, 2006) p. 123
  41. Khrenov B A i dr Kosmicheskie Issledovaniya 46 27 (2008); Khrenov B A et al Cosmic Res. 46 25 (2008)
  42. Kanmae T et al J. Phys. D 45 275203 (2012)
  43. Naidis G V Phys. Rev. E 79 057401 (2009)
  44. Armstrong R A et al Geophys. Res. Lett. 27 653 (2000)
  45. Williams E R Phys. Today 54 (11) 41 (2001)
  46. Williams E R et al Sprites, Elves And Intense Lightning Discharges (NATO Science Ser. II, Vol. 225, Eds M Füllekrug, E A Mareev, M J Rycroft) (Dordrecht: Springer, 2006) p. 237
  47. Parra-Rojas F C et al J. Geophys. Res. Space Phys. 118 4649 (2013)
  48. Bucsela E et al J. Atm. Solar-Terr. Phys. 65 583 (2003)
  49. Bazelyan E M, Raizer Yu P Iskrovoi Razryad (M.: Izd-vo MFTI, 1997); Per. na angl. yaz., Bazelyan E M, Raizer Yu P Spark Discharge (Boca Raton, FL: CRC Press, 1998)
  50. van Veldhuizen E M, Kemps P C M, Rutgers W R IEEE Trans. Plasma Sci. 30 162 (2002)
  51. Šimek M et al J. Phys. Conf. Ser. 550 012037 (2014)
  52. Pancheshnyi S, Nudnova M, Starikovskii A Phys. Rev. E 71 016407 (2005)
  53. Tarasenko V F i dr Optika Atmosfery Okeana 27 1017 (2014)
  54. Tarasenko V F (Ed.) Runaway Electrons Preionized Diffuse Discharges (New York: Nova Science Publ., 2014)
  55. Rybka D V i dr Optika Atmosfery Okeana 26 85 (2013); Rybka D V Atmos. Ocean. Opt. 26 449 (2013)
  56. Robledo-Martinez A, Garcia-Villarreal A, Sobral H J. Geophys. Res. Space Phys. 122 948 (2017)
  57. Tarasenko V F i dr Prikladnaya Fizika (4) 49 (2016); Tarasenko V F et al Plasma Phys. Rep. 43 792 (2017)
  58. Opaits D F et al Geophys. Res. Lett. 37 L14801 (2010)
  59. Strikovskii A V i dr Fizika Plazmy 43 866 (2017); Strikovskiy A V et al Plasma Phys. Rep. 43 1031 (2017)
  60. Adachi T et al J. Phys. D 41 234010 (2008)
  61. D’yakonov M I, Kachorovskii V Yu Zh. Eksp. Teor. Fiz. 94 321 (1988); D’yakonov M I, Kachorovskii V Yu Sov. Phys. JETP 67 1049 (1988)
  62. Babaeva N Yu, Naidis G V J. Phys. D 29 2423 (1996)
  63. Babaeva N Yu, Naidis G V IEEE Trans. Plasma Sci. 25 375 (1997)
  64. Luque A, Ratushnaya V, Ebert U J. Phys. D 41 234005 (2008)
  65. Luque A, Ebert U Geophys. Res. Lett. 37 L06806 (2010)
  66. Qin J, Pasko V P Geophys. Res. Lett. 42 2031 (2015)
  67. Raizer Y P, Milikh G M, Shneider M N Geophys. Res. Lett. 33 L23801 (2006)
  68. Raizer Y P, Milikh G M, Shneider M N J. Geophys. Res. Space Phys. 115 A00E42 (2010)
  69. Riousset J A, Pasko V P, Bourdon A J. Geophys. Res. Space Phys. 115 12321 (2010)
  70. da Silva C L, Pasko V P J. Geophys. Res. 118 A13561 (2013)
  71. Popov N A, Shneider M N, Milikh G M J. Atmos. Solar-Terr. Phys. 147 121 (2016)
  72. Köhn C, Chanrion O, Neubert T J. Geophys. Res. Space Phys. 124 3083 (2019)
  73. Malagón-Romero A et al Geophys. Res. Lett. 47 e2019GL085776 (2020)
  74. Sosni E A et al Horizons In World Physics Vol. 292 (Ed. A Reimer) (New York: Nova Science Publ., 2017) p. 1
  75. Ermakov V I, Stozhkov Yu I "Fizika grozovykh oblakov" Preprint №2 (M.: FIAN, 2004)
  76. Sosnin E A i dr Pis’ma ZhETF 105 600 (2017); Sosni E A JETP Lett. 105 641 (2017)
  77. Panarin A A i dr Optika Spektroskopiya 122 185 (2017); Panarin A A et al Opt. Spectrosc. 122 168 (2017)
  78. Panarin V A i dr Optika Atmosfery Okeana 30 243 (2017)
  79. Sosnin E A i dr Zh. Eksp. Teor. Fiz. 152 1081 (2017); Sosni E A et al J. Exp. Theor. Phys. 125 920 (2017)
  80. Sosni E A et al Eur. Phys. J. D 71 25 (2017)
  81. Tarasenko V F et al Phys. Plasmas 24 043514 (2017)
  82. Sosnin E A i dr Teplofiz. Vys. Temp. 56 911 (2018); Sosni E A et al High Temp. 56 837 (2018)
  83. Panarin V A et al J. Phys. D 51 204005 (2018)
  84. Baksht E Kh et al Proc. of the 20th Intern. Symp. on High-Current Electronics, ISHCE, Tomsk, Russia, 16 - 22 September 2018 (Piscataway, NJ: IEEE, 2018) p. 176
  85. Kuznetsov V S i dr Optika Spektroskopiya 125 311 (2018); Kuznetsov V S et al Opt. Spectrosc. 125 324 (2018)
  86. Sosni E A et al Phys. Plasmas 25 083513 (2018)
  87. Sosnin E A i dr Optika Atmosfery Okeana 32 585 (2019); Sosni E A et al Atmos. Ocean. Opt. 32 710 (2019)
  88. Sosnin E A i dr Aktual’nye problemy radiofiziki: VIII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya, g. Tomsk, 1 - 4 oktyabrya 2019 (Tomsk: Izd. dom TGU, 2019) p. 430
  89. Sosnin E A i dr Optika Atmosfery Okeana 33 112 (2020)
  90. Sosnin E A i dr Izv. Vuzov. Fizika (7) 182 (2019); Sosni E A Rus. Phys. J. 62 1289 (2019)
  91. Bazelyan E M, Raizer Yu P Lightning Physics And Lightning Protection (Bristol: Institute of Physics Publ., 2000)
  92. Raether H Electron Avalanches And Breakdown In Gases (Washington, DC: Butterworths, 1964)
  93. Tarasenko V F et al J. Phys. Conf. Ser. 927 012062 (2017)
  94. Stenbaek-Nielsen H C, McHarg M G J. Phys. D 41 234009 (2008)
  95. Robledo-Martinez A, Garcia-Villareal L A Phys. Plasmas. 23 033508 (2016)
  96. Horwell C J et al J. Appl. Volcanol. 6 12 (2017)
  97. Newhall C G, Self S J. Geophys. Res. 87 1231 (1982)
  98. Mahoney J J, CoffM F (Eds) Large Igneous Provinces: Continental, Oceanic, And Planetary Flood Volcanism (Washington, DC: American Geophysical Union, 1997)
  99. Goto A et al Jpn. Mag. Mineralog. Petrolog. Sci. 31 162 (2002)
  100. Moore R C et al J. Geophys. Res. Space Phys. 108 63 (2003)
  101. Qin J et al Nat. Commun. 5 3740 (2014)
  102. Plane J M C et al Space Sci. Rev. 214 23 (2018)
  103. Tarasenko V F et al J. Phys. Conf. Ser. 1405 052053 (2020)
  104. Russell C T et al Nature 450 661 (2007)
  105. Yair Y Adv. Space Res. 50 293 (2012)
  106. Dubrovin D et al Icarus 241 313 (2014)
  107. Yair Y et al J. Geophys. Res. 09002 (2009)
  108. Dubrovin D et al J. Geophys. Res. Space Phys. 6 (2010)
  109. Gordillo-Vázquez F J J. Phys. D 41 234016 (2008)
  110. Evtushenko A A, Mareev E A Izv. Vuzov. Radiofizika 54 123 (2011); Evtushenko A A, Mareev E A Radiophys. Quantum Electron. 54 111 (2011)
  111. Evtushenko A A, Kuterin F A Izv. Vuzov. Radiofizika 56 947 (2013); Evtushenko A A, Kuterin F A Radiophys. Quantum Electron. 56 853 (2014)
  112. Winkler H, Notholt J J. Atmos. Solar-Terr. Phys. 122 75 (2015)
  113. Ivanov M F i dr Usp. Fiz. Nauk 184 247 (2014); Ivanov M F et al Phys. Usp. 57 234 (2014)
  114. Sosnin E A i dr Izv. Vuzov. Fizika (4) 126 (2017); SosnÉ A Russ. Phys. J. 60 701 (2017)
  115. Gallagher J W et al J. Phys. Chem. Ref. Data 12 109 (1983)
  116. Zheleznyak M B, Mnatsakanyan A Kh, Sizykh S V Teplofiz. Vys. Temp. 20 423 (1982); Zheleznyak M B, Mnatsakanyan A Kh, Sizykh S V High Temp. 20 357 (1982)
  117. Bourdon A et al Plasma Sources Sci. Technol. 16 656 (2007)
  118. Lieberman M A, Lichtenberg A J Principles Of Plasma Discharges And Materials Processing (Hoboken, NJ: Wiley-Interscience, 2005)
  119. Kossyi I A et al Plasma Sources Sci. Technol. 1 207 (1992)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions