Methodological notes

Application of the modified Duguay method for measuring the Lorentz contraction of a moving body length

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

According to Lorentz transformations, for a stationary observer, time in a moving inertial reference frame slows down, while the linear dimensions are reduced. While the first effect was observed more than 80 years ago, the second one has not been directly observed so far. The modified Duguay method is proposed in this paper for measuring the Lorentz contraction of a moving body length using the propagation of light pulses in an optical liquid medium. Three variants of the measurement scheme are considered: with a 'light square' in an optical medium, with a 'light ruler' in two optical media with different refractive indices, and with two relativistic electron bunches in a vacuum. It is shown that the classical effect of compression of spatial intervals between light pulses in an optical medium, which was not considered earlier, considerably reduces the measurement accuracy. It is also shown that the distortion of the sides of a light square oriented orthogonal to the movement direction caused by the different delays of light from different parts of a moving body also reduces the measurement accuracy of the light square method.

Typically, an English fulltext is available in about 3 months from the date of publication of the original article.

Keywords: Lorentz transformations, relativistic length contraction, light pulses
PACS: 03.30.+p
DOI: 10.3367/UFNe.2020.11.038877
Citation: Malykin G B "Application of the modified Duguay method for measuring the Lorentz contraction of a moving body length" Phys. Usp. 64 1058–1062 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, October 2020, revised: 9th, November 2020, 18th, November 2020

Оригинал: Малыкин Г Б «Применение модифицированного метода Дюге для измерения лоренцевского сокращения длины движущегося тела» УФН 191 1117–1121 (2021); DOI: 10.3367/UFNr.2020.11.038877

References (42) Similar articles (20) ↓

  1. B.M. Bolotovskii, G.B. Malykin “Visible shape of moving bodies62 1012–1030 (2019)
  2. G.B. Malykin “Para-Lorentz transformations52 263–266 (2009)
  3. G.B. Malykin, V.I. Pozdnyakova “Quadratic Sagnac effect — the influence of the gravitational potential of the Coriolis force on the phase difference between the arms of a rotating Michelson interferometer (an explanation of D C Miller's experimental results 1921—1926)58 398–406 (2015)
  4. V.A. Aleshkevich “On special relativity teaching using modern experimental data55 1214–1231 (2012)
  5. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving body42 505–509 (1999)
  6. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?57 714–720 (2014)
  7. G.B. Malykin “The Sagnac effect: correct and incorrect explanations43 1229 (2000)
  8. E.G. Bessonov “Another route to the Lorentz transformations59 475–479 (2016)
  9. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effect41 941–944 (1998)
  10. N.N. Rozanov “Superluminal localized structures of electromagnetic radiation48 167–171 (2005)
  11. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at rest63 601–610 (2020)
  12. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativity46 1099–1103 (2003)
  13. S.I. Syrovatskii “On the problem of the ’retardation’ of the relativistic contraction of moving bodies19 273–274 (1976)
  14. X.-B. Huang “A rigorous minimum-assumption derivation of the Lorentz transformation54 529–532 (2011)
  15. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effects47 797–820 (2004)
  16. G.B. Malykin, V.I. Pozdnyakova “Geometric phases in singlemode fiber lightguides and fiber ring interferometers47 289–308 (2004)
  17. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coin52 821–829 (2009)
  18. A.A. Logunov, Yu.V. Chugreev “Special theory of relativity and the Sagnac effect31 861–864 (1988)
  19. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild field58 1118–1123 (2015)
  20. J. Gaite “The relativistic virial theorem and scale invariance56 919–931 (2013)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions