Issues

 / 

2021

 / 

October

  

Methodological notes


Application of the modified Duguay method for measuring the Lorentz contraction of a moving body length

 
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

According to Lorentz transformations, for a stationary observer, time in a moving inertial reference frame slows down, while the linear dimensions are reduced. While the first effect was observed more than 80 years ago, the second one has not been directly observed so far. The modified Duguay method is proposed in this paper for measuring the Lorentz contraction of a moving body length using the propagation of light pulses in an optical liquid medium. Three variants of the measurement scheme are considered: with a 'light square' in an optical medium, with a 'light ruler' in two optical media with different refractive indices, and with two relativistic electron bunches in a vacuum. It is shown that the classical effect of compression of spatial intervals between light pulses in an optical medium, which was not considered earlier, considerably reduces the measurement accuracy. It is also shown that the distortion of the sides of a light square oriented orthogonal to the movement direction caused by the different delays of light from different parts of a moving body also reduces the measurement accuracy of the light square method.

Fulltext pdf (500 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038877
Keywords: Lorentz transformations, relativistic length contraction, light pulses
PACS: 03.30.+p
DOI: 10.3367/UFNe.2020.11.038877
URL: https://ufn.ru/en/articles/2021/10/f/
000740826300005
2-s2.0-85123458644
Citation: Malykin G B "Application of the modified Duguay method for measuring the Lorentz contraction of a moving body length" Phys. Usp. 64 1058–1062 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, October 2020, revised: 9th, November 2020, 18th, November 2020

Оригинал: Малыкин Г Б «Применение модифицированного метода Дюге для измерения лоренцевского сокращения длины движущегося тела» УФН 191 1117–1121 (2021); DOI: 10.3367/UFNr.2020.11.038877

References (42) Similar articles (20) ↓

  1. B.M. Bolotovskii, G.B. Malykin “Visible shape of moving bodiesPhys. Usp. 62 1012–1030 (2019)
  2. G.B. Malykin “Para-Lorentz transformationsPhys. Usp. 52 263–266 (2009)
  3. G.B. Malykin, V.I. Pozdnyakova “Quadratic Sagnac effect — the influence of the gravitational potential of the Coriolis force on the phase difference between the arms of a rotating Michelson interferometer (an explanation of D C Miller's experimental results 1921—1926)Phys. Usp. 58 398–406 (2015)
  4. V.A. Aleshkevich “On special relativity teaching using modern experimental dataPhys. Usp. 55 1214–1231 (2012)
  5. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving bodyPhys. Usp. 42 505–509 (1999)
  6. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?Phys. Usp. 57 714–720 (2014)
  7. G.B. Malykin “The Sagnac effect: correct and incorrect explanationsPhys. Usp. 43 1229 (2000)
  8. E.G. Bessonov “Another route to the Lorentz transformationsPhys. Usp. 59 475–479 (2016)
  9. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effectPhys. Usp. 41 941–944 (1998)
  10. N.N. Rozanov “Superluminal localized structures of electromagnetic radiationPhys. Usp. 48 167–171 (2005)
  11. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at restPhys. Usp. 63 601–610 (2020)
  12. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativityPhys. Usp. 46 1099–1103 (2003)
  13. S.I. Syrovatskii “On the problem of the ’retardation’ of the relativistic contraction of moving bodiesSov. Phys. Usp. 19 273–274 (1976)
  14. X.-B. Huang “A rigorous minimum-assumption derivation of the Lorentz transformationPhys. Usp. 54 529–532 (2011)
  15. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  16. G.B. Malykin, V.I. Pozdnyakova “Geometric phases in singlemode fiber lightguides and fiber ring interferometersPhys. Usp. 47 289–308 (2004)
  17. N.N. Rosanov “Unipolar pulse of an electromagnetic field with uniform motion of a charge in a vacuumPhys. Usp. 66 1059–1064 (2023)
  18. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coinPhys. Usp. 52 821–829 (2009)
  19. A.A. Logunov, Yu.V. Chugreev “Special theory of relativity and the Sagnac effectSov. Phys. Usp. 31 861–864 (1988)
  20. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild fieldPhys. Usp. 58 1118–1123 (2015)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions