Issues

 / 

2020

 / 

May

  

Reviews of topical problems


Complex phase diagrams of systems with isotropic potentials: results of computer simulations

, , ,
Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation

This review is based on a talk by the authors at the outdoor Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, devoted to the 60th anniversary of the Vereshchagin Institute for High Pressure Physics of the Russian Academy of Sciences. The dependence of phase-diagram characteristics and phase transitions on the form of intermolecular potential is reviewed and analyzed for two- and three-dimensional systems with isotropic interaction. First, the case of monotonic repulsive and attractive parts of the potential is considered. In particular, it is demonstrated that, if the width of the attractive part decreases, the critical point can disappear and even go under the melting curve. In the main part of the review, three-dimensional systems with potentials having a negative curvature in a repulsive region, that is, with two space scales in this region, are discussed in detail: in this case, a number of crystalline phases may occur, as might maxima on the melting curve, water-like anomalies, and liquid-liquid transitions. The dependence of the melting scenario on the form of the potential in two-dimensional systems is also discussed.

Typically, an English fulltext is available in about 3 months from the date of publication of the original article.

Keywords: theory of liquids, effective potentials, core-softened potentials, liquid anomalies, structural anomaly, diffusion anomaly, density anomaly, two-dimensional systems, melting scenarios, Berezinskii—Kosterlitz—Thouless—Halperin—Nelson—Young theory, Hertz potential, phase diagram
PACS: 02.70.Ns, 64.10.+h, 64.70.D− (all)
DOI: 10.3367/UFNe.2018.04.038417
URL: https://ufn.ru/en/articles/2020/5/a/
Citation: Ryzhov V N, Tareyeva E E, Fomin Yu D, Tsiok E N "Complex phase diagrams of systems with isotropic potentials: results of computer simulations" Phys. Usp. 63 417–439 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 15th, August 2018, revised: 6th, December 2019, 15th, January 2020

Оригинал: Рыжов В Н, Тареева Е Е, Фомин Ю Д, Циок Е Н «Сложные фазовые диаграммы систем с изотропными потенциалами: результаты компьютерного моделирования» УФН 190 449–473 (2020); DOI: 10.3367/UFNr.2018.04.038417

References (273) Cited by (3) Similar articles (20) ↓

  1. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional melting60 857–885 (2017)
  2. V.V. Brazhkin, A.G. Lyapin et alWhere is the supercritical fluid on the phase diagram?55 1061–1079 (2012)
  3. R.S. Berry, B.M. Smirnov “Phase transitions and adjacent phenomena in simple atomic systems48 345–388 (2005)
  4. A.I. Zhmakin “Physical aspects of cryobiology51 231–252 (2008)
  5. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  6. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases62 215–248 (2019)
  7. V.E. Fortov, A.G. Khrapak et alDusty plasmas47 447–492 (2004)
  8. B.M. Smirnov “Scaling method in atomic and molecular physics44 1229–1253 (2001)
  9. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical properties54 227–258 (2011)
  10. G.N. Sarkisov “Approximate equations of the theory of liquids in the statistical thermodynamics of classical liquid systems42 545–561 (1999)
  11. B.M. Smirnov “Processes involving clusters and small particles in a buffer gas54 691–721 (2011)
  12. V.N. Tsytovich “Self-organized dusty structures in a complex plasma under microgravity conditions: prospects for experimental and theoretical studies58 150–166 (2015)
  13. D.K. Belashchenko “Computer simulation of liquid metals56 1176–1216 (2013)
  14. I.V. Kukushkin, V.B. Timofeev “Magneto-optics of two-dimensional electron systems in the ultraquantum limit: incompressible quantum liquids and the Wigner crystal36 (7) 549–571 (1993)
  15. L.V. Kulik, A.V. Gorbunov et alSpin excitations in two-dimensional electron gas, their relaxation, photoexcitation and detection methods, and the role of Coulomb correlations62 865–891 (2019)
  16. G.R. Ivanitskii, A.A. Deev, E.P. Khizhnyak “Long-term dynamic structural memory in water: can it exist?57 37–65 (2014)
  17. V.F. Khirnyi, A.A. Kozlovskii “Dynamic dissipative mixed states in inhomogeneous type II superconductors47 273–288 (2004)
  18. A.V. Bushman, V.E. Fortov “Model equations of state26 465–496 (1983)
  19. A.I. Savvatimskii, S.V. Onufriev “Investigation of the physical properties of carbon under high temperatures (experimental studies)63 (10) (2020)
  20. G.A. Malygin “Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect44 173 (2001)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions