Reviews of topical problems

Nature of Poisson's ratio of amorphous polymers and glasses and its relation to structure-sensitive properties

Buryat State University, Smolina st. 24a, Ulan-Ude, 670000, Russian Federation

A review and analysis of studies concerning the nature of Poisson's ratio μ of glassy systems are presented. The value of μ is a more pronounced structure-sensitive property than are elasticity moduli. The unique relation of μ with the Gruneisen parameter is substantiated. In this connection, the interrelation of harmonic (linear) and anharmonic (nonlinear) characteristics is separately considered. Poisson's ratio proves to be a single-valued function of parameters characterizing dynamic properties and critical processes and is sensitive to the lattice dynamics and the atomic-molecular structure of glasses. The structural features of isotropic solids with the negative Poisson's ratio (coefficient of transverse deformation) are discussed.

Keywords: coefficient of transverse deformation, interatomic interaction potential, anharmonicity, elastic constants, amorphous organic polymers, inorganic glasses
PACS: 62.20.−x, 63.20.Ry, 81.05.Kf (all)
DOI: 10.3367/UFNe.2019.05.038574
Citation: Sanditov D S "Nature of Poisson's ratio of amorphous polymers and glasses and its relation to structure-sensitive properties" Phys. Usp. 63 327–341 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, March 2019, revised: 31st, May 2019, 22nd, May 2019

Оригинал: Сандитов Д Д С «Природа коэффициента Пуассона аморфных полимеров и стёкол и его связь со структурно-чувствительными свойствами» УФН 190 355–370 (2020); DOI: 10.3367/UFNr.2019.05.038574

References (59) Similar articles (20) ↓

  1. D.S. Sanditov, M.I. Ojovan “Relaxation aspects of the liquid—glass transition62 111–130 (2019)
  2. Yu.S. Nechaev “Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement, and failure51 681–697 (2008)
  3. R.B. Morgunov “Spin micromechanics in the physics of plasticity47 125–147 (2004)
  4. R.A. Andrievski “Metallic nano/microglasses: new approaches in nanostructured materials science56 261–268 (2013)
  5. L.V. Spivak “Synergy effects in the deformation response of thermodynamically open metal — hydrogen systems51 863–885 (2008)
  6. L.S. Palatnik, A.I. Il’inskii “Mechanical properties of metallic films11 564–581 (1969)
  7. R.N. Gurzhi “Hydrodynamic effects in solids at low temperature11 255–270 (1968)
  8. V.V. Brazhkin “Ultrahard nanomaterials: myths and reality63 523–544 (2020)
  9. Yu.S. Nechaev “The distribution of carbon in steels54 465–471 (2011)
  10. V.M. Agranovich, I.I. Lalov “Effects of strong anharmonicity in the spectra of optical phonons and polaritons28 484–505 (1985)
  11. B.M. Smirnov “Processes in plasma and gases involving clusters40 1117–1147 (1997)
  12. V.N. Murzin, R.E. Pasynkov, S.P. Solov’ev “Ferroelectricity and crystal-lattice dynamics10 453–484 (1968)
  13. G.P. Mikhailov, T.I. Borisova “Molecular motion in polymers7 375–384 (1964)
  14. V.D. Lakhno “Pekar's ansatz and the strong coupling problem in polaron theory58 295–308 (2015)
  15. M.L. Ter-Mikhaelyan “High energy electromagnetic processes in amorphous and inhomogeneous media46 1231–1252 (2003)
  16. B.E. Meierovich “Gravitational properties of cosmic strings44 981–997 (2001)
  17. V.D. Buchel’nikov, N.K. Dan’shin et alOn the relative contributions of precessional and longitudinal oscillations to the dynamics of magnets42 957–990 (1999)
  18. M.I. Klinger “Low-temperature properties and localized electronic states of glasses30 699–715 (1987)
  19. V.V. Lider “Precise determination of crystal lattice parameters63 907–928 (2020)
  20. V.V. Prudnikov, P.V. Prudnikov, M.V. Mamonova “Nonequilibrium critical behavior of model statistical systems and methods for the description of its features60 762–797 (2017)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions