Issues

 / 

2020

 / 

March

  

Instruments and methods of investigation


Direct laser cooling of molecules

 
The National Research Center "Kurchatov Institute", Konstantinov Petersburg Nuclear Physics Institute, Orlova Roshcha, Gatchina, Leningradskaya Region, 188300, Russian Federation

The methods of laser cooling of atoms have already long been applied to obtain cold and ultracold atomic gases, including degenerate states, in particular, an atomic Bose—Einstein condensate. The application of laser cooling methods to molecules was assumed until recently to be impossible because of the complex structure of molecular levels and the absence of closed cooling cycles for transitions between electronic levels of molecules in the general case. However, it has recently become clear that laser cooling can be performed for a large class of molecules, including not only the simplest diatomic molecules but also polyatomic molecules. The review presents the general principles for identifying suitable molecules and discusses current studies on and further developments in the laser cooling of molecules.

Keywords: cold molecules, spectroscopy, laser cooling, electronic structure
PACS: 31.10.+z, 33.20.−t, 37.10.De (all)
DOI: 10.3367/UFNe.2018.12.038509
URL: https://ufn.ru/en/articles/2020/3/d/
Citation: Isaev T A "Direct laser cooling of molecules" Phys. Usp. 63 289–302 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, September 2018, revised: 18th, December 2018, 26th, December 2018

Оригинал: Исаев Т А «Прямое лазерное охлаждение молекул» УФН 190 313–328 (2020); DOI: 10.3367/UFNr.2018.12.038509

References (89) ↓ Cited by (2) Similar articles (3)

  1. Weinstein J D et al Nature 395 148 (1998)
  2. Shuman E S, Barry J F, DeMille D Nature 467 820 (2010)
  3. Kozyryev I et al Phys. Rev. Lett. 118 173201 (2017)
  4. Metcalf H J, van der Straten P Laser Cooling And Trapping (New York: Springer, 1999)
  5. Minogin V G, Letokhov V S Davlenie Lazernogo Izlucheniya na Atomy (M.: Nauka, 1986); Per. na angl. yaz., Minogin V G, Letokhov V S Laser Light Pressure On Atoms (New York: Gordon and Breach Sci. Publ., 1987)
  6. Letokhov V S Usp. Fiz. Nauk 153 311 (1987); Letokhov V S Sov. Phys. Usp. 30 897 (1987)
  7. Krems R V, Stwalley W C, Friedrich B (Eds) Cold Molecules: Theory, Experiment, Applications (Boca Raton, FL: CRC Press, 2009)
  8. Carr L D et al New J. Phys. 11 055049 (2009)
  9. DeMille D Phys. Rev. Lett. 88 067901 (2002)
  10. Wei Q et al ChemPhysChem 17 3714 (2016)
  11. Safronova M S et al Rev. Mod. Phys. 90 025008 (2018)
  12. Andreev V et al (ACME Collab.) Nature 562 355 (2018)
  13. Skripnikov L V, Petrov A N, Titov A V J. Chem. Phys. 139 221103 (2013)
  14. Kastler A J. Phys. Radium 11 255 (1950)
  15. Zel’dovich Ya B Pis’ma ZhETF 19 120 (1974); Zel’dovich Ya B JETP Lett. 19 74 (1974)
  16. Hänsch T W, Schawlow A L Opt. Commun. 13 68 (1975)
  17. Wineland D, Dehlmet H Bull. Am. Phys. Soc. 20 637 (1975)
  18. Andreev S V i dr Pis’ma ZhETF 34 463 (1981); Andreev S V JETP Lett. 34 442 (1981)
  19. Balykin V I, Letokhov V S, Minogin V G Usp. Fiz. Nauk 147 117 (1985); Balykin V I, Letokhov V S, Minogin V G Sov. Phys. Usp. 28 803 (1985)
  20. Letokhov V S, Minogin V G, Pavlik B D Opt. Commun. 19 72 (1976)
  21. Chu C Rev. Mod. Phys. 70 685 (1998); Chu S Usp. Fiz. Nauk 169 274 (1999)
  22. Cohen-Tannoudji C N Rev. Mod. Phys. 70 707 (1998); Koen-Tanudzhi K N Usp. Fiz. Nauk 169 292 (1999)
  23. Phillips W D Rev. Mod. Phys. 70 721 (1998); Filips U D Usp. Fiz. Nauk 169 305 (1999)
  24. Cornell E A, Wieman C E Rev. Mod. Phys. 74 875 (2002); Kornell E A, Viman K E Usp. Fiz. Nauk 173 1320 (2003)
  25. Ketterle W Rev. Mod. Phys. 74 1131 (2002); Ketterle V Usp. Fiz. Nauk 173 1339 (2003)
  26. Hänsch T W Rev. Mod. Phys. 78 1297 (2006); Khensh T V Usp. Fiz. Nauk 176 1368 (2006)
  27. Wineland D J Rev. Mod. Phys. 85 1103 (2013); Vainlend D Dzh Usp. Fiz. Nauk 184 1089 (2014)
  28. Jefferts S R et al Acta Phys. Polon. A 112 759 (2007)
  29. Bloom B J et al Nature 506 71 (2014)
  30. Frisch A et al Nature 507 475 (2014)
  31. Martiyanov K, Makhalov V, Turlapov A Phys. Rev. Lett. 105 030404 (2010)
  32. Barmashova T V i dr Usp. Fiz. Nauk 186 183 (2016); Barmashova T V et al Phys. Usp. 59 174 (2016)
  33. Kagan M Yu, Turlapov A V Usp. Fiz. Nauk 189 225 (2019); Kagan M Yu, Turlapov A V Phys. Usp. 62 215 (2019)
  34. Kolachevskii N N Usp. Fiz. Nauk 181 896 (2011); Kolachevsky N N Phys. Usp. 54 863 (2011)
  35. Kolachevskii N N, Khabarova K Yu Usp. Fiz. Nauk 184 1354 (2014); Kolachevsky N N, Khabarova K Yu Phys. Usp. 57 1230 (2014)
  36. Bernien H et al Nature 551 579 (2017)
  37. Vishnyakova G A et al Laser Phys. 24 074018 (2014)
  38. Vishnyakova G A i dr Usp. Fiz. Nauk 186 176 (2016); Vishnyakova G A et al Phys. Usp. 59 168 (2016)
  39. Ni K-K et al Science 322 231 (2008)
  40. Wu C-H et al Phys. Rev. Lett. 109 085301 (2012)
  41. Park J W, Will S A, Zwierlein M W Phys. Rev. Lett. 114 205302 (2015)
  42. Frisch A et al Phys. Rev. Lett. 115 203201 (2015)
  43. Pazyuk E A i dr Uspekhi Khimii 84 1001 (2015); Pazyuk E A et al Russ. Chem. Rev. 84 1001 (2015)
  44. van de Meerakker S Y T et al Chem. Rev. 112 4828 (2012)
  45. Schnell M, Meijer G Angew. Chem. Int. Ed. 48 6010 (2009)
  46. Tarbutt M R et al Phys. Rev. Lett. 92 173002 (2004)
  47. Osterwalder A et al Phys. Rev. A 81 051401(R) (2010)
  48. Mathavan S C et al ChemPhysChem 17 3709 (2016)
  49. Doyle J M et al Phys. Rev. A 52 R2515 (1995)
  50. Maxwell S E et al Phys. Rev. Lett. 95 173201 (2005)
  51. Hogan S D, Merkt F Phys. Rev. Lett. 100 043001 (2008)
  52. Lev B L et al Phys. Rev. A 77 023402 (2008)
  53. Zeppenfeld M et al Nature 491 570 (2012)
  54. Prehn A et al Phys. Rev. Lett. 116 063005 (2016)
  55. Dalibard J, Cohen-Tannoudji C J. Opt. Soc. Am. B 6 2023 (1989)
  56. Viteau M et al Science 321 232 (2008)
  57. Di Rosa M D Eur. Phys. J. D 31 395 (2004)
  58. Stuhl B K et al Phys. Rev. Lett. 101 243002 (2008)
  59. Shuman E S et al Phys. Rev. Lett. 103 223001 (2009)
  60. Barry J F et al Nature 512 286 (2014)
  61. Truppe S et al Nature Phys. 13 1173 (2017)
  62. Collopy A L et al Phys. Rev. Lett. 121 213201 (2018)
  63. Hemmerling B et al J. Phys. B 49 174001 (2016)
  64. Cheuk L W et al Phys. Rev. Lett. 121 083201 (2018)
  65. Tarbutt M R New J. Phys. 17 015007 (2015)
  66. Devlin J A, Tarbutt M R New J. Phys. 18 123017 (2016)
  67. Skripnikov L V (2018), "On the electronic structure of the YbF molecule", Private communication
  68. Isaev T A, Hoekstra S, Berger R Phys. Rev. A 82 052521 (2010)
  69. Isaev T A, Berger R arXiv:1302.5682
  70. Bast R et al "DIRAC, a relativistic ab initio electronic structure program, Release DIRAC15" (2015) http://www.diracprogram.org
  71. Garcia Ruiz R F et al. arXiv:1910.13416
  72. Isaev T A, Berger R Phys. Rev. Lett. 116 063006 (2016)
  73. Kozlov M G, Labzowsky L N J. Phys. B 28 1933 (1995)
  74. Titov A V et al Recent Advances In The Theory Of Chemical And Physical Systems (Progress in Theoretical Chemistry and Physics) Vol. 15 (Eds J P Julien et al) (Dordrecht: Springer, 2006) p. 253
  75. Isaev T A, Zaitsevskii A V, Eliav E J. Phys. B 50 225101 (2017)
  76. Kozyryev I, Hutzler N R Phys. Rev. Lett. 119 133002 (2017)
  77. Herzberg G Rev. Mod. Phys. 14 219 (1942)
  78. Baron J et al New J. Phys. 19 073029 (2017)
  79. Kozyryev I et al ChemPhysChem 17 3641 (2016)
  80. Ellis A M Int. Rev. Phys. Chem. 20 551 (2001)
  81. Robles E S, Ellis A M, Miller T A J. Am. Chem. Soc. 114 7171 (1992)
  82. Norrgard E B et al Phys. Rev. A 95 062506 (2017)
  83. Lane I C Phys. Rev. A 92 022511 (2015)
  84. Tarallo M G, Iwata G Z, Zelevinsky T Phys. Rev. A 93 032509 (2016)
  85. Stuhl B K et al Nature 492 396 (2012)
  86. Isaev T A, Berger R Phys. Rev. A 86 062515 (2012)
  87. Vutha A C et al Phys. Rev. A 84 034502 (2011)
  88. Isaev T A et al arXiv:1310.1511
  89. Roos B O, Veryazov V, Widmark P-O Theor. Chem. Acc. 111 345 (2004)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions