Issues

 / 

2020

 / 

February

  

Reviews of topical problems


Structural dynamics of free molecules and condensed matter

 a,  b,  c,  d,  e,  b,  a
a Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
b Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninskii prosp 59, Moscow, 119333, Russian Federation
c Ivanovo State University of Chemistry and Technology, pr. F. Yengel'sa 7, Ivanovo, 153460, Russian Federation
d MIREA - Russian Technological University, prosp. Vernadskogo 78, Moscow, 119454, Russian Federation
e Scientific Research Computer Center, Lomonosov Moscow State University, Leninskiye Gory 1, building 4, Moscow, 119991, Russian Federation

Advances in the development of pulsed lasers provided a further breakthrough in the study of the structural dynamics of nuclei and electrons. As a result of this progress, the use of powerful femtosecond laser pulses, both for exciting the sample and for generating ultrashort (in the limit, femto- and even subfemtosecond) photoelectron bunches synchronized with optical pulses for sensing matter, made it possible to observe the coherent dynamics of nuclei and electrons in the studied samples at the required spatio-temporal scales. The huge breakthrough in chemical physics is the possibility of direct observations of reaction processes. A many-particle potential is so complex that the degree of the interaction nonadiabaticity cannot be determined with the accuracy sufficient for predicting reaction paths. How can this information and a new look at the reaction dynamics be used in the future? This question arises in connection with the development of a new conceptual foundation of natural sciences involving the convergence of experimental and theoretical tools in studies of systems of any complexity with the atomic resolution. In this approach, the `atomic-molecular' motion picture is obtained by using mutually complementary information received from simultaneous studies of the ultrafast electron (or X-ray) diffraction, spectroscopy, and the quantum dynamic theory of matter.

Fulltext pdf (984 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.11.038477
Keywords: ultrafast structural dynamics, ultrafast electron diffraction and microscopy, femtosecond laser radiation, electron beams of ultrashort duration
PACS: 07.78.+s, 42.65.Re, 61.05.J− (all)
DOI: 10.3367/UFNe.2018.11.038477
URL: https://ufn.ru/en/articles/2020/2/a/
000537855900001
2-s2.0-85085079987
2020PhyU...63..103A
Citation: Aseyev S A, Akhmanov A S, Girichev G V, Ischenko A A, Kochikov I V, Panchenko V Ya, Ryabov E A "Structural dynamics of free molecules and condensed matter" Phys. Usp. 63 103–122 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, October 2018, revised: 19th, November 2018, 22nd, November 2018

Оригинал: Асеев С А, Ахманов А С, Гиричев Г В, Ищенко А А, Кочиков И В, Панченко В Я, Рябов Е А «Структурная динамика свободных молекул и конденсированного вещества» УФН 190 113–136 (2020); DOI: 10.3367/UFNr.2018.11.038477

References (169) ↓ Cited by (2) Similar articles (20)

  1. Ishchenko A A, Bagratashvili V N, Avilov A S Kristallogr. 56 805 (2011); Ishchenko A A, Bagratashvili V N, Avilov A S Crystallogr. Rep. 56 751 (2011)
  2. Eigen M Discuss. Faraday Soc. 17 194 (1954)
  3. Zewail A H J. Phys. Chem. A 104 5660 (2000)
  4. Bhattacharjee Y Nature 412 474 (2001)
  5. Krausz F, Ivanov M Rev. Mod. Phys 81 163 (2009)
  6. Sciaini G, Miller R J D Rep. Prog. Phys 74 096101 (2011)
  7. Ischenko A A , Weber P M, Miller R J D Uspekhi Khimii 86 1173 (2017); Ischenko A A , Weber P M, Miller R J D Russ. Chem. Rev 86 1173 (2017)
  8. Ruan C-Y et al Microsc. Microanalysis 15 323 (2009)
  9. Shorokhov D, Zewail A H J. Chem. Phys 144 080901 (2016)
  10. Zewail A H Annu. Rev. Phys. Chem 57 65 (2006)
  11. Dwyer J R et al Phil. Trans. R. Soc. A 364 741 (2006)
  12. Srinivasan R et al Helv. Chim. Acta 86 1761 (2003)
  13. Ewbank J D, Schäfer L, Ischenko A A J. Mol. Struct. 524 1 (2000)
  14. Miller R J D Science 343 1108 (2014)
  15. Ishchenko A A i dr Usp. Fiz. Nauk 184 681 (2014); Ischenko A A et al Phys. Usp. 57 633 (2014)
  16. Miller R J D Faraday Discuss 194 777 (2016)
  17. Ischenko A A, Weber P M, Miller R J D Chem. Rev 117 11066 (2017)
  18. Zewail A H, Thomas J M 4D Electron Microscopy. Imaging In Space And Time (London: Imperial College Press, 2010)
  19. Ischenko A A, Aseyev S A (Eds) Time-Resolved Electron Diffraction: For Chemistry, Biology And Materials Science (Advances in Imaging and Electron Physics) Vol. 184 (San Diego: Elsevier, 2014)
  20. Ishchenko A A, Girichev G V, Tarasov Yu I Difraktsiya Elektronov: Struktura i Dinamika Svobodnykh Molekul i Kondensirovannogo Sostoyaniya Veshchestva (M.: Fizmatlit, 2012)
  21. Ishchenko A A Struktura i Dinamika Svobodnykh Molekul i Kondensirovannogo Veshchestva (M.: Fizmatlit, 2018)
  22. Ischenko A A et al Appl. Phys. B 32 161 (1983)
  23. Ishchenko A A i dr Vestn. MGU. Ser. 2. Khimiya 26 (2) 140 (1985)
  24. Akhmanov S A i dr Pis’ma ZhTF 11 (3) 157 (1985); Akhmanov S A et al Sov. Tech. Phys. Lett. 11 63 (1985)
  25. Williamson S, Mourou G, Li J C M Phys. Rev. Lett 52 2364 (1984)
  26. Porter G Science 160 1299 (1968); Per. na russk. yaz., Porter Dzh Uspekhi Khimii 39 919 (1970)
  27. Demtröder W Laser Spectroscopy Vol. 1, 2 (Berlin: Springer, 2008)
  28. Mukamel S et al Annu. Rev. Phys. Chem 64 101 (2013)
  29. Flynn G W, Parmenter C S, Wodtke A M J. Phys. Chem 100 12817 (1996)
  30. Bagratashvili V N et al Multiple Photon Infrared Laser Photophysics And Photochemistry (Chur: Harwood Academic Publ., 1985)
  31. Akhmanov S A i dr Pis’ma ZhETF 26 603 (1977); Akhmanov S A et al JETP Lett. 26 453 (1977)
  32. Nesbitt D J, Field R W J. Phys. Chem 100 12735 (1996)
  33. Letokhov V S (Ed.) Laser Spectroscopy Of Highly Vibrationally Excited Molecules (Bristol: A. Hilger, 1989)
  34. Bagratashvili V N i dr Pis’ma ZhETF 30 502 (1979); Bagratashvili V N et al JETP Lett. 30 471 (1979)
  35. Makarov A A, Malinovskii A L, Ryabov E A Usp. Fiz. Nauk 182 1047 (2012); Makarov A A, Malinovsky A L, Ryabov E A Phys. Usp 55 977 (2012)
  36. Li Y-L et al J. Org. Chem 67 4228 (2002)
  37. Biswas N, Umapathy S J. Chem. Phys 107 7849 (1997)
  38. Kukura P et al Science 310 1006 (2005)
  39. Mizutani Y, Kitagawa T Science 278 443 (1997)
  40. Fayer M D (Ed.) Ultrafast Infrared Vibrational Spectroscopy (Boca Raton, FL: CRC Press, 2013)
  41. Schreier W J et al Science 315 625 (2007)
  42. Asplund M C, Zanni M T, Hochstrasser R M Proc. Natl. Acad. Sci. USA 97 8219 (2000)
  43. Zheng J R et al Science 313 1951 (2006)
  44. Cho M Chem. Rev. 108 1331 (2008)
  45. Chergui M, Collet E Chem. Rev 117 11025 (2017)
  46. Fetisov G V Sinkhrotronnoe Izluchenie. Metody Issledovaniya Struktury Veshchestva (M.: Fizmatlit, 2007); Fetisov G V Usp. Fiz. Nauk 190 2 (2020); Fetisov G V Phys. Usp. 63 2 (2020)
  47. Bressler C, Chergui M Chem. Rev. 104 1781 (2004)
  48. Ihee H Acc. Chem. Res 42 356 (2009)
  49. Kim K H et al Nature 518 385 (2015)
  50. Chen L X Angew. Chem 116 2946 (2004)
  51. Chen L X Angew. Chem. Int. Ed. 43 2886 (2004)
  52. Bressler C, Abela R, Chergui M Z. Kristallogr 223 307 (2008)
  53. Chen L X et al J. Am. Chem. Soc 129 9616 (2007)
  54. Gawelda W et al Phys. Rev. Lett. 98 057401 (2007)
  55. Khalil M et al J. Phys. Chem. A 110 38 (2006)
  56. Gawelda W et al J. Am. Chem. Soc 128 5001 (2006)
  57. Pham V-T et al J. Am. Chem. Soc 129 1530 (2007)
  58. Chen L X et al Science 92 262 (2001)
  59. Altarelly M (Ed.-in-Chief) Annual Report (Hamburg: European X-Ray Free-Electron Laser Facility GmbH (2012)
  60. Coppens P Chem. Commun 1317 (2003)
  61. Coppens P et al J. Am. Chem. Soc. 126 5980 (2004)
  62. Ihee H Acc. Chem. Res. 42 356 (2009)
  63. Ihee H et al Proc. Natl. Acad. Sci. USA 102 7145 (2005)
  64. Kim C D et al Acta Cryst. A 58 133 (2002)
  65. Techert S, Schotte F, Wulff M Phys. Rev. Lett 86 2030 (2001)
  66. Schotte F et al Science 300 1944 (2003)
  67. Tomita A et al Proc. Natl. Acad. Sci. USA 106 2612 (2009)
  68. Šrajer V et al Science 274 1726 (1996)
  69. Collet E et al Science 300 612 (2003)
  70. Cavalleri A et al Nature 442 664 (2006)
  71. Lee S H et al Phys. Rev. Lett. 95 246104 (2005)
  72. Lindenberg A M et al Science 308 392 (2005)
  73. Gaffney K J et al Phys. Rev. Lett 95 125701 (2005)
  74. Cavalleri A L et al Phys. Rev. Lett 94 114801 (2005)
  75. Fritz D M et al Science 315 633 (2007)
  76. Kuthirummal N, Weber P M Chem. Phys. Lett 378 647 (2003)
  77. Kuthirummal N et al J. Chem. Phys. 125 133307 (2006)
  78. Gosselin J L, Weber P M J. Phys. Chem. A 109 4899 (2005)
  79. Liang X et al J. Mol. Struct. 978 250 (2010)
  80. Gudmundsdóttir H et al J. Chem. Phys 141 234308 (2014)
  81. Deb S, Minitti M P, Weber P M J. Chem. Phys 135 044319 (2011)
  82. Cardoza J D et al J. Electron Spectrosc. Relat. Phenom. 165 5 (2008)
  83. Rudakov F, Weber P M J. Chem. Phys 136 134303 (2012)
  84. Minitti M P, Cardoza J D, Weber P M J. Phys. Chem. A 110 10212 (2006)
  85. Minitti M P, Weber P M Phys. Rev. Lett. 98 253004 (2007)
  86. Deb S et al J. Phys. Chem. A 115 1804 (2011)
  87. Bush J C, Minitti M P, Weber P M J. Photochem. Photobiol. A 213 70 (2010)
  88. Bush J C, Minitti M P, Weber P M J. Phys. Chem. A 114 11078 (2010)
  89. Cheng W et al J. Phys. Chem. A 109 1920 (2005)
  90. Deb S, Cheng X, Weber P M J. Phys. Chem. Lett 4 2780 (2013)
  91. Cheng X et al Chem. Sci 5 4394 (2014)
  92. Cheng X et al Chem. Sci. 7 619 (2016)
  93. Cheng X et al J. Phys. Chem. A 119 2813 (2015)
  94. Cheng X et al Nature Commun 7 11013 (2016)
  95. Cardoza J D, Weber P M J. Chem. Phys 127 036101 (2007)
  96. Cardoza J D, Rudakov F M, Weber P M J. Phys. Chem. A 112 10736 (2008)
  97. Rudakov F et al Combust. Flame 171 162 (2016)
  98. Niikura H et al Nature 421 826 (2003)
  99. Kim J et al Acta Cryst. A 66 270 (2010)
  100. Gliserin A et al Nature Commun 6 8723 (2015)
  101. Santala M K et al Appl. Phys. Lett. 102 174105 (2013)
  102. Cavalieri A L et al Phys. Rev. Lett 94 114801 (2005)
  103. Hastings J B et al Appl. Phys. Lett 89 184109 (2006)
  104. Tokita S et al Phys. Rev. Lett. 105 215004 (2010)
  105. Kassier G H et al J. Appl. Phys 105 113111 (2009)
  106. Hawkes P W, Kasper E Principles Of Electron Optics Vol. 1-3 (New York: Academic Press, 1996)
  107. Fultz B, Howe J Transmission Electron Microscopy And Diffractometry Of Materials (Heidelberg: Springer, 2013)
  108. Parish C M, Russell P E Advances In Imaging And Electron Physics Vol. 147 (Ed. P W Hawkes) (New York: Academic Press, 2007) p. 1
  109. Najafi E et al Ultramicroscopy 184 46 (2018)
  110. Vainshtein B K Usp. Fiz. Nauk 152 75 (1987); Vainshtein B K Sov. Phys. Usp 30 393 (1987)
  111. Brandon D, Kaplan W D Microstructural Characterization Of Materials (Chichester: J. Wiley, 1999); Per. na russk. yaz., Brandon D, Kaplan U Mikrostruktura Materialov. Metody Issledovaniya i Kontrolya (M.: Tekhnosfera, 2004)
  112. Vlasov A I, Elsukov K A, Kosolapov I A Elektronnaya Mikroskopiya (Biblioteka Nanoinzheneriya, Kn. 11, Pod Red. V A Shakhnova) (M.: Izd-vo MGTU im. N.E. Baumana, 2011)
  113. Vlasov A I, Elsukov K A, Panfilov Yu V Metody Mikroskopii (Biblioteka Nanoinzheneriya, Kn. 1, Pod Red. V A Shakhnova) (M.: Izd-vo MGTU im. N.E. Baumana, 2011)
  114. Shindo D, Oikawa T Analytical Transmission Electron Microscopy For Materials Science (Tokyo: Springer-Verlag, 2002)
  115. Umanskii Ya S i dr Kristallografiya, Rentgenografiya i Elektronnaya Mikroskopiya (M.: Metallurgiya, 1982)
  116. Heidenreich R D Fundamentals Of Transmission Electron Microscopy (New York: Interscience Publ., 1964)
  117. Hirsch P B et al Phys. Today 19 (10) 93 (1966)
  118. Locquin M, Langeron M Handbook Of Microscopy (Oxford: Butterworth-Heinemann, 1983)
  119. Spence J C H Experimental High-Resolution Electron Microscopy (New York: Oxford Univ. Press, 1988)
  120. Watt I M The Principles And Practice Of Electron Microscopy (Cambridge: Cambridge Univ. Press, 1997)
  121. Knoll M, Ruska E Z. Phys 78 318 (1932)
  122. Thomas G, Goringe M J Transmission Electron Microscopy Of Materials (New York: Wiley, 1979)
  123. Amelinckx S Methods Of Direct Observation Of Dislocations (New York: Academic Press, 1964)
  124. Hawkes P W Biol. Cell 93 432 (2001)
  125. Motosuke M, Tetsuya S "Stroboscopic scanning electron microscope" US Patent 4,538,065 (1985)
  126. Spivak G V i dr Izv. AN SSSR. Ser. Fiz. 32 1111 (1968)
  127. Luk’yanov A E, Galstyan V G, Spivak G V Radiotekhnika Elektronika (11) 2424 (1970)
  128. Taheri M L, Browning N D, Lewellen J Microsc. Microanalysis 15 271 (2009)
  129. Knauer W J. Vac. Sci. Technol 16 1676 (1979)
  130. King W E et al J. Appl. Phys. 97 111101 (2005)
  131. Zewail A H Phil. Trans. R. Soc. A 363 315 (2005)
  132. Xia T et al Proc. Natl. Acad. Sci. USA 102 13013 (2005)
  133. Badali D S, Gengler R Y N, Miller R J D Struct. Dyn. 3 034302 (2016)
  134. Baskin J S, Zewail A H Comptes Rendus Phys 15 176 (2014)
  135. Grinolds M S et al Proc. Natl. Acad. Sci. USA 103 18427 (2006)
  136. Williams J et al Sruct. Dyn 4 044035 (2017)
  137. Hassan M Th J. Phys. B 51 032005 (2018)
  138. Fu X et al Science 355 494 (2017)
  139. Hassan M Th et al Nature 530 66 (2016)
  140. Hassan M Th et al Nature Photon. 11 425 (2017)
  141. Andreev S V i dr Kvantovaya Elektronika 47 116 (2017); Andreev S V et al Quantum Electron 47 116 (2017)
  142. Mironov B N i dr Pis’ma ZhETF 151 494 (2017); Mironov B N et al JETP Lett. 124 422 (2017)
  143. Frank J (Ed.) Electron Tomography. Methods For Three-Dimensional Visualization Of Structures In The Cell (New York: Springer, 2006)
  144. Kwon O-H, Zewail A H Science 328 1668 (2010)
  145. Barwick B, Zewail A H ACS Photonics 2 1391 (2015)
  146. Ryabov A, Baum P Science 353 374 (2016)
  147. Hada M et al J. Chem. Phys. 145 024504 (2016)
  148. Yurtsever A, van der Veen R M, Zewail A H Science 335 59 (2012)
  149. Pomarico E et al ACS Photonics 5 759 (2018)
  150. Aseyev S A, Weber P M, Ischenko A A J. Analyt. Sci. Meth. Instrum 3 30 (2013)
  151. Schafer L et al Izv. Vuzov. Ser. Khimiya Khimicheskaya Tekhnologiya 60 (5) 4 (2017)
  152. Ishchenko A A, Tarasov Yu I, Shefer L Tonkie Khimicheskie Tekhnologii 12 (4) 5 (2017); Ischenko A A, Tarasov Yu I, Schäfer L Fine Chem. Technol 12 (4) 5 (2017)
  153. Ischenko A A Phys. Res. Intern 2013 236743 (2013)
  154. Zheltikov A M Sverkhkorotkie Impul’sy i Metody Nelineinoi Optiki (M.: Fizmatlit, 2006)
  155. Shao H-C, Starace A F Phys. Rev. A 88 062711 (2013)
  156. Shao H-C, Starace A, Madsen L 43rd Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics, June 4 - 8, 2012, Orange County, CA, USA; Shao H-C, Starace A, Madsen L Bull. Am. Phys. Soc. 57 (5) N3.00008 (2012)
  157. Leone S R et al Nature Photon 8 162 (2014)
  158. Ullrich J, Rudenko A, Moshammer R Annu. Rev. Phys. Chem 63 635 (2012)
  159. Kaplan A E Nature 431 633 (2004)
  160. Kaplan A E Opt. Photon. News 17 28 (2006)
  161. Zewail A H Nature 412 279 (2001)
  162. Shchelev M Ya Usp. Fiz. Nauk 170 1002 (2000); Schelev M Ya Phys. Usp 43 931 (2000)
  163. Shchelev M Ya Kvantovaya Elektronika 41 577 (2011); Schelev M Ya Quantum Electron. 41 577 (2011)
  164. Andreev S A et al SPIE Proc 6279 62797O (2007)
  165. Degtyareva V P, Monastyrskii M A, Shchelev M Ya Ishchenko A A, Girichev G V, Tarasov Yu I. Difraktsiya Elektronov: Struktura i Dinamika Svobodnykh Molekul i Kondensirovannogo Sostoyaniya Veshchestva (M.: Fizmatlit, 2012) p. 499, Gl. 11
  166. Hansen P et al Appl. Phys. Lett 101 083501 (2012)
  167. Fortov V E Usp. Fiz. Nauk 179 653 (2009); Fortov V E Phys. Usp 52 615 (2009)
  168. Zewail A H Acta Cryst. A 66 135 (2010)
  169. Zewail A, Zewail M Angew. Chem. Int. Ed. 52 108 (2013)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions