Issues

 / 

2020

 / 

December

  

Reviews of topical problems


Does the embedded atom model have predictive power?

 
National University of Science and Technology "MISIS", Leninskiiprosp. 4, Moscow, 119049, Russian Federation

Potassium, rubidium, aluminum, iron, nickel, and tin embedded atom models (EAMs) have been used as examples to ascertain how well the properties of a metal are described by EAM potentials calculated from the shape of shock adiabats and/or static compression data (from a function of cold pressure). Verification of the EAM potential implies an evaluation of its predictive power and an analysis of the agreement with experiment both at 0 or 298 K and under shock compression. To obtain consistent results, all contributions of collectivized electrons to energy and pressure need to be taken into consideration, especially in transition metals. Taking account of or ignoring electronic contributions has little effect on the calculated melting lines of the models, self-diffusion coefficients, and viscosity. The shape of the melting line is sensitive to the behavior of the repulsive branch of the pair contribution to the EAM potential at small distances.

Fulltext is available at IOP
Keywords: embedded atom model (EAM), molecular dynamics method, embedding potential, electronic contributions, predictive power, tandem, static compression, shock compression
PACS: 02.70.−c, 64.30.−t, 64.70.D− (all)
DOI: 10.3367/UFNe.2020.01.038761
URL: https://ufn.ru/en/articles/2020/12/a/
Citation: Belashchenko D K "Does the embedded atom model have predictive power?" Phys. Usp. 63 1161–1187 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, November 2019, revised: 19th, January 2020, 23rd, January 2020

:    « ?» 190 1233–1260 (2020); DOI: 10.3367/UFNr.2020.01.038761

References (131) Similar articles (20) ↓

  1. D.K. Belashchenko “Computer simulation of liquid metals56 1176–1216 (2013)
  2. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  3. V.N. Mineev, A.I. Funtikov “Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth’s core47 671–686 (2004)
  4. R.S. Berry, B.M. Smirnov “Phase transitions in various kinds of clusters52 137–164 (2009)
  5. B.M. Smirnov “Processes involving clusters and small particles in a buffer gas54 691–721 (2011)
  6. V.N. Ryzhov, E.E. Tareyeva et alComplex phase diagrams of systems with isotropic potentials: results of computer simulations63 417–439 (2020)
  7. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional melting60 857–885 (2017)
  8. I.K. Gainullin “Resonant charge transfer during ion scattering on metallic surfaces63 888–906 (2020)
  9. A.I. Savvatimskii, S.V. Onufriev “Investigation of the physical properties of carbon under high temperatures (experimental studies)63 1015–1036 (2020)
  10. V.I. Shematovich, M.Ya. Marov “Escape of planetary atmospheres: physical processes and numerical models61 217–246 (2018)
  11. I.S. Lyubutin, A.G. Gavriliuk “Research on phase transformations in 3d-metal oxides at high and ultrahigh pressure: state of the art52 989–1017 (2009)
  12. S.V. Dmitriev, E.A. Korznikova et alDiscrete breathers in crystals59 446–461 (2016)
  13. A.A. Ishchenko, S.A. Aseev et alUltrafast electron diffraction and electron microscopy: present status and future prospects57 633–669 (2014)
  14. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo “Wavelets and their uses44 447–478 (2001)
  15. A.A. Ionin, S.I. Kudryashov, A.A. Samokhin “Material surface ablation produced by ultrashort laser pulses60 149–160 (2017)
  16. D.K. Belashchenko “Diffusion mechanisms in disordered systems: computer simulation42 297–319 (1999)
  17. S.V. Vonsovskii, Yu.A. Izyumov “Electron theory of transition metals. I5 547–593 (1963)
  18. V.I. Karas’, V.I. Sokolenko “Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields61 1051–1071 (2018)
  19. M.V. Durnev, M.M. Glazov “Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides61 825–845 (2018)
  20. L.A. Chernozatonskii, A.A. Artyukh “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications61 2–28 (2018)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions