Issues

 / 

2020

 / 

December

  

Reviews of topical problems


Does the embedded atom model have predictive power?

 
National University of Science and Technology "MISIS", Leninskii prosp. 4, Moscow, 119049, Russian Federation

Potassium, rubidium, aluminum, iron, nickel, and tin embedded atom models (EAMs) have been used as examples to ascertain how well the properties of a metal are described by EAM potentials calculated from the shape of shock adiabats and/or static compression data (from a function of cold pressure). Verification of the EAM potential implies an evaluation of its predictive power and an analysis of the agreement with experiment both at 0 or 298 K and under shock compression. To obtain consistent results, all contributions of collectivized electrons to energy and pressure need to be taken into consideration, especially in transition metals. Taking account of or ignoring electronic contributions has little effect on the calculated melting lines of the models, self-diffusion coefficients, and viscosity. The shape of the melting line is sensitive to the behavior of the repulsive branch of the pair contribution to the EAM potential at small distances.

Fulltext pdf (962 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.01.038761
Keywords: embedded atom model (EAM), molecular dynamics method, embedding potential, electronic contributions, predictive power, tandem, static compression, shock compression
PACS: 02.70.−c, 64.30.−t, 64.70.D− (all)
DOI: 10.3367/UFNe.2020.01.038761
URL: https://ufn.ru/en/articles/2020/12/a/
000621721400001
2-s2.0-85102640850
2020PhyU...63.1161B
Citation: Belashchenko D K "Does the embedded atom model have predictive power?" Phys. Usp. 63 1161–1187 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, November 2019, revised: 19th, January 2020, 23rd, January 2020

Îðèãèíàë: Áåëàùåíêî Ä Ê «Èìååò ëè ìîäåëü ïîãðóæ¸ííîãî àòîìà ïðåäñêàçàòåëüíóþ ñèëó?» ÓÔÍ 190 1233–1260 (2020); DOI: 10.3367/UFNr.2020.01.038761

References (131) ↓ Cited by (14) Similar articles (20)

  1. Daw M S, Baskes M I Phys. Rev. B 29 6443 (1984)
  2. Finnis M W, Sinclair J E Philos. Mag. A 50 45 (1984)
  3. Foiles S M, Baskes M I, Daw M S Phys. Rev. B 33 7983 (1986)
  4. Voter A F, Chen S P MRS Proc. 82 175 (1986)
  5. Sutton A P, Chen J Philos. Mag. Lett. 61 139 (1990)
  6. Norman G E, Stegailov V V Matem. Modelirovanie 24 (6) 3 (2012); Norman G E, Stegailov V V Math. Models Comput. Simul. 5 305 (2013)
  7. Belashchenko D K Liquid Metals: From Atomistic Potentials To Properties, Shock Compression, Earth S Core And Nanoclusters (New York: Nova Science Publ., 2018)
  8. Belashchenko D K Usp. Fiz. Nauk 183 1281 (2013); Belashchenko D K Phys. Usp. 56 1176 (2013)
  9. Schommers W Phys. Lett. A 43 157 (1973)
  10. Reatto L Philos. Mag. A 58 37 (1988)
  11. Munejiri Sh et al J. Non-Cryst. Solids 205-207 278 (1996)
  12. Belashchenko D K, Gelchinski B R J. Non-Cryst. Solids 353 3515 (2007)
  13. Pozzo M, Alfè D Phys. Rev. B 88 024111 (2013)
  14. Cao Q-L et al J. Chem. Phys. 140 114505 (2014)
  15. Cao Q-L et al Chinese Phys. Lett. 32 086201 (2015)
  16. Banerjea A, Smith J R Phys. Rev. B 37 6632 (1988)
  17. Cai J, Ye Y Y Phys. Rev. B 54 8398 (1996)
  18. Baskes M I Phys. Rev. B 46 2727 (1992)
  19. Lee B J et al Phys. Rev. B 64 184102 (2001)
  20. Doyama M, Kogure Y Comput. Mater. Sci. 14 80 (1999)
  21. Vella J R et al J. Phys. Chem. B 119 8960 (2015)
  22. Vinet P et al J. Geophys. Res. 92 9319 (1987)
  23. Dewaele A et al Phys. Rev. B 78 104102 (2008)
  24. Shock Wave Database, http://www.ihed.ras.ru/rusbank/
  25. Marsh S P (Ed.) LASL Shock Hugoniot Data (Berkeley, CA: Univ. of California Press, 1980)
  26. Al’tshuler L V i dr Zhurn. Priklad. Mekh. Tekh. Fiz. (2) 3 (1981); Al’tshuler L V et al J. Appl. Mech. Tech. Phys. 22 145 (1981)
  27. Guillaume Ch L et al Nat. Phys. 7 211 (2011)
  28. Gregoryanz E et al Science 320 1054 (2008)
  29. Narygina O et al Phys. Rev. B 84 054111 (2011)
  30. Boehler R, Zha C Physica B+C 139-140 233 (1986)
  31. Tonkov E Yu, Ponyatovsky E G Phase Transformations Of Elements Under High Pressure (Boca Raton, FL: CRC Press, 2005)
  32. Jayaraman A, Newton R C, McDonough J M Phys. Rev. 159 527 (1967)
  33. Boehler R, Ross M Earth Planet. Sci. Lett. 153 223 (1997)
  34. Hänström A, Lazor P J. Alloys Compd. 305 209 (2000)
  35. Hemley R J, Mao H-K Int. Geology Rev. 43 1 (2001)
  36. Lord O T et al Earth Planet. Sci. Lett. 408 226 (2014)
  37. Landau L D, Lifshits E M Mekhanika Sploshnykh Sred (M.: Gostekhteorizdat, 1954); Per. na angl. yaz., Landau L D, Lifshitz E M Fluid Mechanics (London: Pergamon Press, 1959)
  38. Zel’dovich Ya B, Raizer Yu P Fizika Udarnykh Voln i Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii (M.: Nauka, 1966); Per. na angl. yaz., Zel’dovich Ya B, Raizer Yu P Physics Of Shock Waves And High-Temperature Hydrodynamic Phenomena (New York: Academic Press, 1966, 1967)
  39. McQueen R G, Marsh S P J. Appl. Phys. 31 1253 (1960)
  40. Al’tshuler L V, Bakanova A A, Trunin R F Zh. Eksp. Teor. Fiz. 42 91 (1962); Al’tshuler L V, Bakanova A A, Trunin R F Sov. Phys. JETP 15 65 (1962)
  41. Walsh J M et al Phys. Rev. 108 196 (1957)
  42. Al’tshuler L V i dr Zh. Eksp. Teor. Fiz. 34 874 (1958); Al’tshuler L V et al Sov. Phys. JETP 7 874 (1958)
  43. Al’tshuler L V i dr Zh. Eksp. Teor. Fiz. 38 1061 (1960); Al’tshuler L V et al Sov. Phys. JETP 11 766 (1960)
  44. Al’tshuler L V, Chekin B S Doklady I Vsesoyuz. simpoziuma po impul’snym davleniyam, Moskva, 24 - 26 oktyabrya 1973 g. Vol. 1 (M.: VNIIFTRI, 1974) p. 5
  45. Brown J M, Fritz J N, Hixson R S J. Appl. Phys. 88 5496 (2000)
  46. Trunin R F i dr Eksperimental’nye Dannye Po Udarno-volnovomu Szhatiyu i Adiabaticheskomu Rasshireniyu Kondensirovannykh Veshchestv (Pod red. R F Trunina) (Sarov: RFYaTs-VNIIEF, 2001)
  47. Zharkov V N, Kalinin V A Uravneniya Sostoyaniya Tverdykh Tel pri Vysokikh Davleniyakh i Temperaturakh (M.: Nauka, 1968); Per. na angl. yaz., Zharkov V N, Kalinin V A Equations Of State For Solids At High Pressures And Temperatures (New York: Consultants Bureau, 1971)
  48. Trunin R F i dr Zh. Eksp. Teor. Fiz. 103 2189 (1993); Trunin R F et al J. Exp. Theor. Phys. 76 1095 (1993)
  49. Medvedev A B, Trunin R F Usp. Fiz. Nauk 182 829 (2012); Medvedev A B, Trunin R F Phys. Usp. 55 773 (2012)
  50. Kormer S B i dr Zh. Eksp. Teor. Fiz. 42 686 (1962); Kormer S B et al Sov. Phys. JETP 15 477 (1962)
  51. Slater J C Introduction To Chemical Physics (New York: Dover Publ., 1939)
  52. Landau L D, Stanyukovich K P Dokl. Akad. Nauk SSSR 46 399 (1945)
  53. Boness D A, Brown J M, McMahan A K Phys. Earth Planet. Inter. 42 227 (1986)
  54. Wasserman E, Stixrude L, Cohen R E Phys. Rev. B 53 8296 (1996)
  55. Belonoshko A B, Ahuja R, Johansson B Phys. Rev. Lett. 84 3638 (2000)
  56. Lin Z, Zhigilei L V, Celli V Phys. Rev. B 77 075133 (2008)
  57. Lin Z, Zhigilei L V Appl. Surf. Sci. 253 6295 (2007)
  58. Electron-Phonon Coupling and Electron Heat Capacity in Metals at High Electron Temperatures, http://www.faculty.virginia.edu/CompMat/electron-phonon-coupling/
  59. Bévillon E et al Phys. Rev. B 89 115117 (2014)
  60. Belashchenko D K ZhFKh 87 633 (2013); Belashchenko D K Russ. J. Phys. Chem. A 87 615 (2013)
  61. Landau L D, Lifshits E M Statisticheskaya Fizika (M.: GITTL, 1951); Per. na angl. yaz., Landau L D, Lifshitz E M Statistical Physics (London: Pergamon Press, 1958)
  62. Al’tshuler L V i dr Zh. Eksp. Teor. Fiz. 78 741 (1980); Al’tshuler L V et al Sov. Phys. JETP 51 373 (1980)
  63. Levashov P R et al J. Phys. Condens. Matter 22 505501 (2010)
  64. Migdal K P Diss. ... kand. fiz.-mat. nauk (M.: VNIIA im. N.L. Dukhova, 2017)
  65. Louis A A J. Phys. Condens. Matter 14 9187 (2002)
  66. Brommer P, Gähler F Modelling Simul. Mater. Sci. Eng. 15 295 (2007)
  67. Mendelev M I et al Philos. Mag. 92 4454 (2012)
  68. Mendelev M I et al Philos. Mag. 83 3977 (2003)
  69. Alfè D, Price G D, Gillan M J Phys. Rev. B 65 165118 (2002)
  70. Belashchenko D K, Smirnova D E ZhFKh 85 2048 (2011); Belashchenko D K, Smirnova D E Russ. J. Phys. Chem. A 85 1908 (2011)
  71. Waseda Y The Structure Of Non-Crystalline Materials. Liquids And Amorphous Solids (New York: McGraw-Hill, 1980)
  72. Bakanova A A, Dudoladov I P, Trunin R F Fiz. Tverd. Tela 7 1615 (1965); Bakanova A A, Dudoladov I P, Trunin R F Sov. Phys. Solid State 7 1307 (1965)
  73. Belashchenko D K Teplofiz. Vys. Temp. 51 697 (2013); Belashchenko D K High Temp. 51 626 (2013)
  74. Bystrov P I i dr Zhidkometallicheskie Teplonositeli Teplovykh Trub i Energeticheskikh Ustanovok (Otv. red. V A Kirillin) (M.: Nauka, 1988); Per. na angl. yaz., Bystrov P I et al Liquid-Metal Coolants For Heat Pipes And Power Plants (Ed. V A Kirillin) (New York: Hemisphere Publ. Corp., 1990)
  75. Winzenick M, Vidjayakumar V, Holzapfel W B Phys. Rev. B 50 12381 (1994)
  76. McBride E E "On structural studies of high-density potassium and sodium" Thesis (Edinburgh: Univ. of Edinburgh, 2013), submitted in fulfilment of the requirements for the degree of Doctor of Philosophy
  77. Young D A, Ross M Phys. Rev. B 29 682 (1984)
  78. Belashchenko D K Teplofiz. Vys. Temp. 50 354 (2012); Belashchenko D K High Temp. 50 331 (2012)
  79. Rice M H J. Phys. Chem. Solids 26 483 (1965)
  80. Grover R et al J. Phys. Chem. Solids 30 2091 (1969)
  81. Al’tshuler L V i dr Zh. Eksp. Teor. Fiz. 38 790 (1960); Al’tshuler L V et al Sov. Phys. JETP 11 573 (1960)
  82. Glushak B L i dr Zh. Eksp. Teor. Fiz. 96 1301 (1989); Glushak B L et al Sov. Phys. JETP 69 739 (1989)
  83. Garai J, Chen J, Telekes G Calphad 33 737 (2009)
  84. Dewaele A, Loubeyre P, Mezouar M Phys. Rev. B 70 094112 (2004)
  85. Belashchenko D K, Vorotyagin A V, Gel’chinskii B R Teplofiz. Vys. Temp. 49 676 (2011); Belashchenko D K, Vorotyagin A V, Gelchinsky B R High Temp. 49 656 (2011)
  86. Oh D J, Johnson R A J. Mater. Res. 3 471 (1988)
  87. Rohrer C L Modelling Simul. Mater. Sci. Eng. 2 119 (1994)
  88. Mishin Y et al Phys. Rev. B 59 3393 (1999)
  89. Morozov I V et al Comput. Phys. Commun. 182 1974 (2011)
  90. Ercolessi F, Adams J B Europhys. Lett. 26 583 (1994)
  91. Mendelev M I et al Philos. Mag. 88 1723 (2008)
  92. Liu X-Y, Ercolessi F, Adams J B Modelling Simul. Mater. Sci. Eng. 12 665 (2004)
  93. McQueen R G et al High-Velocity Impact Phenomena (Ed. R Kinslow) (New York: Academic Press, 1970) p. 293; Kinslow R (Ed.) "Appendix A - shock wave data for standard materials" High-Velocity Impact Phenomena (New York: Academic Press, 1970) p. 515, appendices
  94. Dewaele A et al Phys. Rev. Lett. 97 215504 (2006)
  95. Belashchenko D K, Ostrovskii O I ZhFKh 85 1063 (2011); Belashchenko D K, Ostrovskii O I Russ. J. Phys. Chem. A 85 967 (2011)
  96. Dorogokupets P I et al Sci. Rep. 7 41863 (2017)
  97. Hixson R S, Winkler M A, Hodgdon M L Phys. Rev. B 42 6485 (1990)
  98. Assael M J et al J. Phys. Chem. Ref. Data 35 285 (2006)
  99. Belashchenko D K, Magidson I A Izv. Vuzov. Chernaya Metallurgiya (3) 4 (1983)
  100. Mendelev M I, Belashchenko D K Metally (3) 21 (1995)
  101. Landa A et al Acta Mater. 46 3027 (1998)
  102. Vitek V, Ackland G J, Cserti J MRS Proc. 186 237 (1990)
  103. Baskes M I Mater. Chem. Phys. 50 152 (1997)
  104. Zhang Q, Lai W S, Liu B X J. Non-Cryst. Solids 261 137 (2000)
  105. Koči L et al Phys. Rev. B 74 012101 (2006)
  106. Özgen S, Sonǧur L, Kara İ Turk. J. Phys. 36 59 (2012)
  107. Cherne F J, Baskes M I, Deymier P A Phys. Rev. B 65 024209 (2001)
  108. Alemany M M G et al J. Non-Cryst. Solids 250-252 53 (1999)
  109. Belashchenko D K Teplofiz. Vys. Temp. 58 61 (2020); Belashchenko D K High Temp. 58 64 (2020)
  110. Urlin V D Zh. Eksp. Teor. Fiz. 49 485 (1965); Urlin V D Sov. Phys. JETP 22 341 (1966)
  111. Salamat A et al Phys. Rev. B 84 140104(R) (2011)
  112. Gavriliuk A G et al Pis’ma ZhETF 106 702 (2017); Gavriliuk A G et al JETP Lett. 106 733 (2017)
  113. Belashchenko D K ZhFKh 75 89 (2001); Belashchenko D K Russ. J. Phys. Chem. 75 81 (2001)
  114. Belashchenko D K Teplofiz. Vys. Temp. 59 (2021), v pechati; Belashchenko D K High Temp. 59 (2021), in press
  115. Itami T et al Phys. Rev. B 67 064201 (2003)
  116. Munejiri S et al J. Phys. Conf. Ser. 98 042010 (2008)
  117. del Rio B G, González L E EPJ Web Conf. 151 03003 (2017)
  118. Bernard S, Maillet J B Phys. Rev. B 66 012103 (2002)
  119. Gubin S A et al Phys. Procedia 72 338 (2015)
  120. Minakov D V, Levashov P R Phys. Rev. B 92 224102 (2015)
  121. Japel S et al Phys. Rev. Lett. 95 167801 (2005)
  122. Errandonea D Phys. Rev. B 87 054108 (2013)
  123. Lazor P, Shen G, Saxena S K Phys. Chem. Minerals 20 86 (1993)
  124. Weir S T et al LLNL-JRNL-522418 (Livermore, CA: Lawrence Livermore National Laboratory, 2012)
  125. La Lone B M et al J. Appl. Phys. 126 225103 (2019)
  126. Schwager B et al J. Chem. Phys. 133 084501 (2010)
  127. Briggs R et al Phys. Rev. B 95 054102 (2017)
  128. Godwall B K et al Science 248 462 (1990)
  129. Dewaele A et al Phys. Rev. B 73 144106 (2007)
  130. Partouche-Sebban D et al J. Appl. Phys. 97 043521 (2005)
  131. Belashchenko D K Teplofiz. Vys. Temp. 55 386 (2017); Belashchenko D K High. Temp. 55 370 (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions