Issues

 / 

2020

 / 

October

  

Methodological notes


Irrotational flow (of a magnetic field or incompressible fluid) around a screen with a slot

 ,
All-Russian Scientific Research Institute of Experimental Physics — Federal Nuclear Centre, prosp. Mira 37, Sarov, Nizhny Novgorod region, 607190, Russian Federation

Problems concerning irrotational flows past obstacles may have physical applications in magneto- and electrostatics, as well as in the description of hydrodynamical flows of incompressible fluids. It is shown that for a magnetic field flow (or a flow of incompressible fluid in the hydrodynamical case) around an ideally conducting (impermeable) screen of width D with a narrow slot of width Δ a substantial flux passes trough the slot, so that, for example, a magnetic field (the velocity in the hydrodynamical problem) averaged over a slot with the width Δ = 0.01 D will be 26 times greater than its far upstream value. The hydrodynamical problem is also formulated for an axisymmetric case for a circular screen and orifice. In this case, if the orifice is small enough, the flux of fluid proves to be proportional to the orifice diameter Δ, whereas fluid speed in the orifice increases as 1/Δ if Δ is decreased, i.e., even faster than in plane geometry.

Fulltext pdf (786 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.03.038733
Keywords: magnetic field, plane problem, axisymmetric problem, screen with a slot
PACS: 02.30.Em, 41.20.Cv, 41.20.Gz, 47.15.Hg, 47.15.km (all)
DOI: 10.3367/UFNe.2020.03.038733
URL: https://ufn.ru/en/articles/2020/10/e/
000604419100005
2-s2.0-85099879150
2020PhyU...63.1037G
Citation: Garanin S F, Kuznetsov S D "Irrotational flow (of a magnetic field or incompressible fluid) around a screen with a slot" Phys. Usp. 63 1037–1042 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 31st, January 2020, revised: 28th, February 2020, 12th, March 2020

Оригинал: Гаранин С Ф, Кузнецов С Д «Обтекание потенциальным течением (магнитным полем или несжимаемой жидкостью) экрана с отверстием» УФН 190 1109–1114 (2020); DOI: 10.3367/UFNr.2020.03.038733

References (8) Cited by (2) Similar articles (20) ↓

  1. M.Ya. Agre “Multipole expansions in magnetostaticsPhys. Usp. 54 167–180 (2011)
  2. R.Z. Muratov “Some useful correspondences in classical magnetostatics, and the multipole representations of the magnetic potential of an ellipsoidPhys. Usp. 55 919–928 (2012)
  3. G.N. Gaidukov, I.N. Gorbatyy “Electromagnetic analogies in electro- and magnetostatics problemsPhys. Usp. 62 413–420 (2019)
  4. A.V. Vashkovsky, E.H. Lock “On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structuresPhys. Usp. 54 281–290 (2011)
  5. S.P. Efimov “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problemPhys. Usp. 65 952–967 (2022)
  6. E.H. Lock, S.V. Gerus “Electromagnetic waves in a tangentially magnetized bi-gyrotropic layer (with an example of analysis of spin wave characteristics in a ferrite plate)Phys. Usp. 67 (12) (2024)
  7. E.H. Lock “Angular beam width of a slit-diffracted wave with noncollinear group and phase velocitiesPhys. Usp. 55 1239–1254 (2012)
  8. V.P. Kazantsev “An example illustrating the potentiality and peculiarities of a variational approach to electrostatic problemsPhys. Usp. 45 325–330 (2002)
  9. I.M. Frank “On the moments of a magnetic dipole moving in a mediumSov. Phys. Usp. 32 456–458 (1989)
  10. G.T. Zatsepin, Yu.A. Nechin, G.B. Khristiansen “Use of the magnetic induction of iron in cosmic-ray and high-energy physicsSov. Phys. Usp. 30 1007–1008 (1987)
  11. V.M. Ponizovskii “Free suspension of a Conducting disc in an alternating magnetic fieldSov. Phys. Usp. 12 688–689 (1970)
  12. M.V. Kuzelev, A.A. Rukhadze “Waves in inhomogeneous plasmas and liquid and gas flows. Analogies between electro- and gas-dynamic phenomenaPhys. Usp. 61 748–764 (2018)
  13. V.A. Saranin “Electrostatic oscillatorsPhys. Usp. 55 700–708 (2012)
  14. V.A. Saranin, V.V. Mayer “Interaction of two charged conducting balls: theory and experimentPhys. Usp. 53 1067–1074 (2010)
  15. V.A. Saranin “Electric field strength of charged conducting balls and the breakdown of the air gap between themPhys. Usp. 45 1287–1292 (2002)
  16. V.A. Saranin “On the interaction of two electrically charged conducting ballsPhys. Usp. 42 385–390 (1999)
  17. S.V. Vonsovskii, M.S. Svirskii “The Klein paradox and the zitterbewegung of an electron in a field with a constant scalar potentialPhys. Usp. 36 (5) 436–439 (1993)
  18. M.L. Martinson, A.V. Nedospasov “On the charge density inside a conductor carrying a currentPhys. Usp. 36 (1) 23–24 (1993)
  19. Kh.M. Karakhanova, L.M. Kovyazin, V.A. Trofimov “Demonstration of the law of electromagnetic inductionSov. Phys. Usp. 33 (3) 253–254 (1990)
  20. M.A. Miller “Charge and current electrostatics. Nonstationary sources of static fieldsSov. Phys. Usp. 27 69–75 (1984)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions