Issues

 / 

2020

 / 

January

  

Methodological notes


Classical problems with the theory of elasticity and the quantum theory of angular momentum

  a, b
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b Department of Physics, Jackson State University, 1400 John R. Lynch Street, Jackson, MS, 39217, USA

We show that application of the methods of the quantum theory of angular momentum enables one to obtain frequency equations for vibrational modes of uniform isotropic elastic sphere, cylindrical rod, and infinite plate and results in a natural classification of these modes. We discuss how these models can be applied to describe vibrations of metal nanoparticles and semiconductor nanocrystals.

Typically, an English fulltext is available in about 3 months from the date of publication of the original article.

Keywords: quantum theory of angular momentum, theory of elasticity, vibrational modes, metal nanoparticles, semiconductor nanocrystals, nanorods, nanoplatelets
PACS: 03.65.−w, 46.40.-p, 46.70.−p (all)
DOI: 10.3367/UFNe.2019.04.038562
URL: https://ufn.ru/en/articles/2020/1/d/
Citation: Goupalov S V "Classical problems with the theory of elasticity and the quantum theory of angular momentum" Phys. Usp. 63 57–65 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, February 2019, revised: 8th, April 2019, 17th, April 2019

Оригинал: Гупалов С В «Классические задачи теории упругости и квантовая теория углового момента» УФН 190 63–72 (2020); DOI: 10.3367/UFNr.2019.04.038562

References (31) Similar articles (20) ↓

  1. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitter57 1022–1034 (2014)
  2. K.S. Vul’fson “Angular momentum of electromagnetic waves30 724–728 (1987)
  3. V.K. Ignatovich “The neutron Berry phase56 603–604 (2013)
  4. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particles42 573–590 (1999)
  5. N.P. Klepikov “Types of transformations used in physics, and particle ’exchange’30 644–648 (1987)
  6. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics16 434–439 (1973)
  7. P. Paradoksov “How quantum mechanics helps us understand classical mechanics9 618–620 (1967)
  8. G.V. Shpatakovskaya “Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ions62 186–197 (2019)
  9. E.D. Trifonov “On the spin-statistics theorem60 621–622 (2017)
  10. V.G. Bagrov, D.M. Gitman, A.S. Pereira “Coherent and semiclassical states of a free particle57 891–896 (2014)
  11. A.A. Grib “On the problem of the interpretation of quantum physics56 1230–1244 (2013)
  12. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentally55 796–807 (2012)
  13. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron optics39 169–177 (1996)
  14. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elements36 (9) 851–853 (1993)
  15. A.S. Tarnovskii “The Bohr-Sommerfeld quantization rule and quantum mechanics33 (1) 86–86 (1990)
  16. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equation33 (12) 1072–1072 (1990)
  17. K.V. Chukbar “Harmony in many-particle quantum problem61 389–396 (2018)
  18. A.L. Barabanov “Angular momentum in classical electrodynamics36 (11) 1068–1074 (1993)
  19. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Green's function method in the theory of Brownian motors62 496–509 (2019)
  20. V.S. Beskin, A.A. Zheltoukhov “On the anomalous torque applied to a rotating magnetized sphere in a vacuum57 799–806 (2014)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions