Issues

 / 

2019

 / 

September

  

Physics of our days


The Higgs program and open questions in particle physics and cosmology

 a, b,  c
a Deutsche Elektronen-Synchrotron, Platanenallee 6, Zeuthen, 15738, Germany
b Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Freiburg, Germany
c Department of Particle Physics and Astrophysics, Faculty of Physics, Weizmann Institute of Science, Herzi 234, Rehovot, 7610001, Israel

The Higgs program is relevant to many of the open fundamental questions in particle physics and in cosmology. Thus, when discussing future collider experiments, one way of comparing them is by assessing their potential contributions to progress on these questions. We discuss in detail the capabilities of the various proposed experiments in searching for singlet scalars, which are relevant to several of the open questions, and in measuring Higgs decays to fermion pairs, which are relevant to the flavor puzzles. On other interesting questions, we list the most relevant observables within the Higgs program.

Fulltext is available at IOP
Keywords: Higgs boson, e+e-collider, pp-collider, flavor physics, Standard Model, baryon asymmetry of the Universe
PACS: 12.10.−g, 12.60.−i, 14.80.−j (all)
DOI: 10.3367/UFNe.2019.05.038568
URL: https://ufn.ru/en/articles/2019/9/e/
Citation: Heinemann B, Nir Y "The Higgs program and open questions in particle physics and cosmology" Phys. Usp. 62 920–930 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, May 2019, 30th, May 2019

Оригинал: Хайнеман Б, Нир Й «Программа изучения бозона Хиггса и открытые вопросы в физике частиц и космологии» УФН 189 985–996 (2019); DOI: 10.3367/UFNr.2019.05.038568

References (75) ↓ Cited by (2) Similar articles (14)

  1. Aad G et al (ATLAS Collab.) Phys. Lett. B 716 1 (2012); Aad G et al (ATLAS Collab.) arXiv:1207.7214
  2. Chatrchyan S et al (CMS Collab.) Phys. Lett. B 716 30 (2012); Chatrchyan S et al (CMS Collab.) arXiv:1207.7235
  3. Englert F, Brout R Phys. Rev. Lett. 13 321 (1964)
  4. Higgs P W Phys. Rev. Lett. 13 508 (1964)
  5. Bordry F et al. arXiv:1810.13022
  6. Bambade P et al. arXiv:1903.01629
  7. CEPC Study Group arXiv:1811.10545
  8. Mangano M et al CERN-ACC-2018-0056
  9. Huang P, Long A J, Wang L-T Phys. Rev. D 94 075008 (2016); Huang P, Long A J, Wang L-T arXiv:1608.06619
  10. Craig N, Englert C, McCullough M Phys. Rev. Lett. 111 121803 (2013); Craig N, Englert C, McCullough M arXiv:1305.5251
  11. Curtin D, Meade P, Yu C-T J. High Energ. Phys. 2014 (11) 127 (2014); Curtin D, Meade P, Yu C-T arXiv:1409.0005
  12. Fan J, Reece M, Wang L-T J. High Energ. Phys. 2015 (08) 152 (2015); Fan J, Reece M, Wang L-T arXiv:1412.3107
  13. Frugiuele C et al J. High Energ. Phys. 2018 (10) 151 (2018); Frugiuele C et al arXiv:1807.10842
  14. Sirunyan A M et al (CMS Collab.) Phys. Lett. B 793 520 (2019); Sirunyan A M et al (CMS Collab.) arXiv:1809.05937
  15. Aaboud M et al (ATLAS) Phys. Lett. B 793 499 (2019); Aaboud M et al (ATLAS) arXiv:1809.06682
  16. Robson A, Roloff P arXiv:1812.01644
  17. Barklow T et al Phys. Rev. D 97 053003 (2018); Barklow T et al arXiv:1708.08912
  18. Bechtle P et al J. High Energ. Phys. 2014 (11) 39 (2014); Bechtle P et al arXiv:1403.1582
  19. Flacke T et al J. High Energ. Phys. 2017 (06) 50 (2017); Flacke T et al arXiv:1610.02025
  20. ATLAS, CMS Collab. arXiv:1902.10229
  21. Sirunyan A M et al (CMS Collab.) Phys. Lett. B 785 462 (2018); Sirunyan A M et al (CMS Collab.) arXiv:1805.10191
  22. Khachatryan V (CMS Collab.) J. High Energ. Phys. 2017 (10) 76 (2017); Khachatryan V (CMS Collab.) arXiv:1701.02032
  23. Aaboud M et al (ATLAS Collab.) Phys. Lett. B 790 1 (2019); Aaboud M et al (ATLAS Collab.) arXiv:1807.00539
  24. Sirunyan A M et al (CMS Collab.) J. High Energ. Phys. 2018 (11) 18 (2018); Sirunyan A M et al (CMS Collab.) arXiv:1805.04865
  25. Aaboud M et al (ATLAS Collab.) Phys. Lett. B 782 750 (2018); Aaboud M et al (ATLAS Collab.) arXiv:1803.11145
  26. Sirunyan et al (CMS Collab.) Phys. Rev. D 99 112003 (2019); Sirunyan et al (CMS Collab.) arXiv:1901.00174
  27. Cepeda M et al. (Physics of the HL-LHC Working Group) arXiv:1902.00134
  28. Aad G et al (ATLAS Colab., CMS Collab.) J. High Energ. Phys. 2016 (08) 45 (2016); Aad G et al (ATLAS Colab., CMS Collab.) arXiv:1606.02266
  29. Katz A, Perelstein M J. High Energ. Phys. 2014 (07) 108 (2014); Katz A, PerelsteM arXiv:1401.1827
  30. Nir Y Phys. Scripta 2013 (T158) 014005 (2013)
  31. Dery A et al J. High Energ. Phys. 2013 (05) 39 (2013); Dery A et al arXiv:1302.3229
  32. Agashe K et al. (Top Quark Working Group) arXiv:1311.2028
  33. Dery A et al J. High Energ. Phys. 2013 (08) 6 (2013); Dery A et al arXiv:1304.6727
  34. Dery A et al Phys. Rev. D 90 115022 (2014); Dery A et al arXiv:1408.1371
  35. Sirunyan A M et al (CMS Collab.) Eur. Phys. J. C 79 421 (2019); Sirunyan A M et al (CMS Collab.) arXiv:1809.10733
  36. ATLAS Collab. ATLAS Note ATLAS-CONF-2018-031
  37. Charles T K et al (CLIC Collab., CLICdp Collab.) The Compact Linear Collider (CLIC) — 2018 Summary Report (CERN Yellow Reports: Monographs, Vol. 2/2018, CERN-2018-005-M, Eds P N Burrows et al) (Geneva: CERN, 2018); Charles T K et al (CLIC Collab., CLICdp Collab.) arXiv:1812.06018
  38. Duarte-Campderros J et al. arXiv:1811.09636
  39. Klein U "FCC-eh as a Higgs facility" FCC Week, The Fourth Annual Meeting of the Future Circular Collider Study, 9 - 13 April 2018, Amsterdam
  40. Aaboud M et al (ATLAS Collab.) Phys. Rev. Lett. 120 211802 (2018); Aaboud M et al (ATLAS Collab.) arXiv:1802.04329
  41. Perez G et al Phys. Rev. D 92 033016 (2015); Perez G et al arXiv:1503.00290
  42. Khachatryan V et al (CMS Collab.) Phys. Lett. B 744 184 (2015); Khachatryan V et al (CMS Collab.) arXiv:1410.6679
  43. Aaboud M et al (ATLAS Collab.) J. High Energ. Phys. 2019 123 (2019); Aaboud M et al (ATLAS Collab.) arXiv:1812.11568
  44. Azzi P et al. (HL-LHC Collab., HE-LHC Working Group) arXiv::1902.04070
  45. Aad G et al (ATLAS Collab.) Eur. Phys. J. C 77 70 (2017); Aad G et al (ATLAS Collab.) arXiv:1604.07730
  46. Sirunyan A M et al (CMS Collab.) J. High Energ. Phys. 2018 (06) 1 (2018); Sirunyan A M et al (CMS Collab.) arXiv:1712.07173
  47. Khachatryan V et al (CMS Collab.) Phys. Lett. B 763 472 (2016); Khachatryan V et al (CMS Collab.) arXiv:1607.03561
  48. Efrati A, Nir Y arXiv:1401.0935
  49. Arkani-Hamed N et al J. High Energ. Phys. (07) 034 (2002)
  50. Contino R, Nomura Y, Pomarol A Nucl. Phys. B 671 148 (2003)
  51. Agashe K, Contino R, Pomarol A Nucl. Phys. B 719 165 (2005)
  52. Giudice G F et al J. High Energ. Phys. (06) 045 (2007)
  53. Thamm A, Torre R, Wulzer A J. High Energ. Phys. 2015 (07) 100 (2015); Thamm A, Torre R, Wulzer A arXiv:1502.01701
  54. Gupta R S, Rzehak H, Wells J D Phys. Rev. D 86 095001 (2012); Gupta R S, Rzehak H, Wells J D arXiv:1206.3560
  55. Liu D, Low I, Yin Z J. High Energ. Phys. 2019 (05) 170 (2019); Liu D, Low I, Yin Z arXiv:1809.09126
  56. Graham P W, Kaplan D E, Rajendran S Phys. Rev. Lett. 115 221801 (2015); Graham P W, Kaplan D E, Rajendran S arXiv:1504.07551
  57. Chung D J H, Long A J, Wang L-T Phys. Rev. D 87 023509 (2013); Chung D J H, Long A J, Wang L-T arXiv:1209.1819
  58. Englert C, McCullough M J. High Energ. Phys. 2013 (07) 168 (2013); Englert C, McCullough M arXiv:1303.1526
  59. Profumo S et al Phys. Rev. D 91 035018 (2015); Profumo S et al arXiv:1407.5342
  60. Kotwal A V et al Phys. Rev. D 94 035022 (2016); Kotwal A V et al arXiv:1605.06123
  61. Shu J, Zhang Y Phys. Rev. Lett. 111 091801 (2013); Shu J, Zhang Y arXiv:1304.0773
  62. Kobakhidze A, Wu L, Yue J J. High Energ. Phys. 2016 (04) 11 (2016); Kobakhidze A, Wu L, Yue J arXiv:1512.08922
  63. Chiang C-W, Fuyuto K, Senaha E Phys. Lett. B 762 315 (2016); Chiang C-W, Fuyuto K, Senaha E arXiv:1607.07316
  64. Guo H-K et al Phys. Rev. D 96 115034 (2017); Guo H-K et al arXiv:1609.09849
  65. Harnik R et al Phys. Rev. D 88 076009 (2013); Harnik R et al arXiv:1308.1094
  66. Demarin F et al Eur. Phys. J. C 74 3065 (2014)
  67. Buckley M R, Gonçalves D Phys. Rev. Lett. 116 091801 (2016); Buckley M R, Gonçalves D arXiv:1507.07926
  68. Amor Dos Santos S et al Phys. Rev. D 96 013004 (2017); Amor Dos Santos S et al arXiv:1704.03565
  69. Huang F P et al Phys. Rev. D 93 103515 (2016); Huang F P et al arXiv:1511.03969
  70. Hayreter A, He X-G, Valencia G Phys. Lett. B 760 175 (2016); Hayreter A, He X-G, Valencia G arXiv:1603.06326
  71. Hayreter A, He X-G, Valencia G Phys. Rev. D 94 075002 (2016); Hayreter A, He X-G, Valencia G arXiv:1606.00951
  72. Gonçalves D, Kim J H, Kong K J. High Energ. Phys. 2018 (06) 79 (2018); Gonçalves D, Kim J H, Kong K arXiv:1804.05874
  73. Bernlochner F U et al Phys. Lett. B 790 372 (2019); Bernlochner F U et al arXiv:1808.06577
  74. de Blas J et al The CLIC Potential For New Physics (CERN Yellow Reports: Monographs, Vol. 3/2018, CERN-2018-009-M, Eds J de Blas et al) (Geneva: CERN, 2018)
  75. The ATLAS Collab. ATLAS-PHYS-PUB-2019-008

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions