Physics of our days

Calcium oscillations in blood platelets and their possible role in 'interpreting' extracellular information by cells

 a, b,  b,  c, b,  a, c, b,  a, c, b
a Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Center for Theoretical Problems of Physicochemical Pharmacology RAS, ul. Kosygina 4, Moscow, 119991, Russian Federation
c Federal Research Center of Pediatric Hematology, Oncology and Immunology, ul. Samory Mashela 1, Moscow, 117997, Russian Federation

Intracellular Ca2+ ions play an important role in transmitting and interpreting information that cells obtain from ambient environment. Having received an external signal, the cell may increase the intracellular Ca2+ concentration within fractions of second by a factor of several hundreds. This phenomenon triggers activation of various cellular systems that generate a response to the external stimulus. The Ca2+ concentration increases in many cells under the effect of an external signal and, apart from it, starts oscillating. Both the frequency and amplitude of those oscillations are influenced by the external signal strength. There are reasons to hypothesize that the conversion of the external signal into the oscillating intracellular signal has some important informational meaning. Methods to measure dynamics of the intracellular Ca2+ concentration and mechanisms that generate those oscillations are reviewed, and the hypotheses how the cell decodes Ca2+ concentration oscillations are presented. The consideration is focused on the platelet, the cell that pays a key role in arrest of hemorrhage. If a vessel is damaged, the platelet is rapidly activated. Identical platelets are divided in the process of arresting hemorrhage into three populations with quite different missions. The platelet seems to somehow 'interpret' the set of external signals and uses the Ca2+ concentration oscillations to 'choose' the population to which it will belong. Owing to the platelet's relative simplicity, there are hopes that the studies of that cell will shortly enable deciphering of the 'code' that drives the Ca2+ concentration oscillations.

Fulltext pdf (1003 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.05.038335
Keywords: intracellular calcium concentration oscillations, platelets, coding, decoding, Poincaré—Andronov—Hopf bifurcation
PACS: 87.10.Ed, 87.16.−b, 87.19.−j (all)
DOI: 10.3367/UFNe.2018.05.038335
Citation: Shakhidzhanov S S, Balabin F A, Obydennyi S I, Ataullakhanov F I, Sveshnikova A N "Calcium oscillations in blood platelets and their possible role in 'interpreting' extracellular information by cells" Phys. Usp. 62 660–674 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, May 2018, 10th, May 2018

Оригинал: Шахиджанов С С, Балабин Ф А, Обыденный С И, Атауллаханов Ф И, Свешникова А Н «Кальциевые осцилляции в тромбоцитах крови и их возможная роль в "интерпретации" клеткой информации из внешнего мира» УФН 189 703–719 (2019); DOI: 10.3367/UFNr.2018.05.038335

References (61) Cited by (2) Similar articles (2) ↓

  1. S.E. Bresler “Physics and biology18 62–73 (1975)
  2. Yu.G. Kudenko “T2K observation of muon-to-electron neutrino oscillations56 1120–1125 (2013)

The list is formed automatically.

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions