Issues

 / 

2019

 / 

July

  

Physics of our days


Calcium oscillations in blood platelets and their possible role in 'interpreting' extracellular information by cells

 a, b,  b,  c, b,  a, c, b,  a, c, b
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Center for Theoretical Problems of Physicochemical Pharmacology RAS, ul. Kosygina 4, Moscow, 119991, Russian Federation
c Federal Research Center of Pediatric Hematology, Oncology and Immunology, ul. Samory Mashela 1, Moscow, 117997, Russian Federation

Intracellular Ca2+ ions play an important role in transmitting and interpreting information that cells obtain from ambient environment. Having received an external signal, the cell may increase the intracellular Ca2+ concentration within fractions of second by a factor of several hundreds. This phenomenon triggers activation of various cellular systems that generate a response to the external stimulus. The Ca2+ concentration increases in many cells under the effect of an external signal and, apart from it, starts oscillating. Both the frequency and amplitude of those oscillations are influenced by the external signal strength. There are reasons to hypothesize that the conversion of the external signal into the oscillating intracellular signal has some important informational meaning. Methods to measure dynamics of the intracellular Ca2+ concentration and mechanisms that generate those oscillations are reviewed, and the hypotheses how the cell decodes Ca2+ concentration oscillations are presented. The consideration is focused on the platelet, the cell that pays a key role in arrest of hemorrhage. If a vessel is damaged, the platelet is rapidly activated. Identical platelets are divided in the process of arresting hemorrhage into three populations with quite different missions. The platelet seems to somehow 'interpret' the set of external signals and uses the Ca2+ concentration oscillations to 'choose' the population to which it will belong. Owing to the platelet's relative simplicity, there are hopes that the studies of that cell will shortly enable deciphering of the 'code' that drives the Ca2+ concentration oscillations.

Fulltext pdf (1003 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.05.038335
Keywords: intracellular calcium concentration oscillations, platelets, coding, decoding, Poincaré—Andronov—Hopf bifurcation
PACS: 87.10.Ed, 87.16.−b, 87.19.−j (all)
DOI: 10.3367/UFNe.2018.05.038335
URL: https://ufn.ru/en/articles/2019/7/c/
000492057500003
2-s2.0-85076769073
2019PhyU...62..660S
Citation: Shakhidzhanov S S, Balabin F A, Obydennyi S I, Ataullakhanov F I, Sveshnikova A N "Calcium oscillations in blood platelets and their possible role in 'interpreting' extracellular information by cells" Phys. Usp. 62 660–674 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, May 2018, 10th, May 2018

Оригинал: Шахиджанов С С, Балабин Ф А, Обыденный С И, Атауллаханов Ф И, Свешникова А Н «Кальциевые осцилляции в тромбоцитах крови и их возможная роль в "интерпретации" клеткой информации из внешнего мира» УФН 189 703–719 (2019); DOI: 10.3367/UFNr.2018.05.038335

References (61) ↓ Cited by (4) Similar articles (3)

  1. Alberts B et al Molecular Biology Of The Cell (New York: Garland Science, Taylor and Francis Group, 2015)
  2. Clapham D E Cell 131 1047 (2007)
  3. Berridge M J, Bootman M D, Roderick H L Nature Rev. Mol. Cell. Biol. 4 517 (2003)
  4. Bootman M D Cold Spring Harbor Perspect. Biol. 4 a011171 (2012)
  5. Berridge M J J. Physiol. 586 5047 (2008)
  6. Ross W N Nature Rev. Neurosci. 13 157 (2012)
  7. Volterra A, Liaudet N, Savtchouk I Nature Rev. Neurosci. 15 327 (2014)
  8. Whitaker M Physiol. Rev. 86 25 (2006)
  9. Vig M, Kinet J-P Nature Immunology 10 21 (2009)
  10. Varga-Szabo D, Braun A, Nieswandt B J. Thrombos. Haemostas. 7 1057 (2009)
  11. Ringer S J. Physiol. 4 29 (1883)
  12. Shimomura O, Johnson F H, Saiga Y J. Cell. Compar. Physiol. 59 223 (1962)
  13. Ridgway E B, Gilkey J C, Jaffe L F Proc. Natl. Acad. Sci. USA 74 623 (1977)
  14. Tsien R Y Biochemistry 19 2396 (1980)
  15. Woods N M, Cuthbertson K S, Cobbold P H Nature 319 600 (1986)
  16. Berridge M J Nature 386 759 (1997)
  17. Michelson A D (Ed.) Platelets (London: Academic Press, 2013)
  18. Heemskerk J W M, Mattheij N J A, Cosemans J M E M J. Thrombos. Haemostas. 11 2 (2013)
  19. Stalker T J et al Blood 121 1875 (2013)
  20. Welsh J D et al Blood 124 1808 (2014)
  21. Tomaiuolo M et al Blood 124 1816 (2014)
  22. Stalker T J et al Blood 124 1824 (2014)
  23. Welsh J D et al Blood 127 1598 (2016)
  24. Agbani E O, Poole A W Blood 130 2171 (2017)
  25. Fogelson A L, Neeves K B Annu. Rev. Fluid Mech. 47 377 (2015)
  26. Rivera J et al Haematologica 94 700 (2009)
  27. Li Z et al Arteriosclerosis Thrombos. Vascular Biol. 30 2341 (2010)
  28. Kazmierczak J, Kempe S, Kremer B Curr. Organic Chem. 17 1738 (2013)
  29. Ataullakhanov F I i dr Biologicheskie Membrany 26 163 (2009)
  30. Dupont G Models Of Calcium Signalling (New York: Springer Science, 2016)
  31. Hohendanner F et al Front. Pharmacology 5 35 (2014)
  32. Blackwell K T J. Neurosci. Meth. 220 131 (2013)
  33. Manninen T, Havela R, Linne M-L Front. Comput. Neurosci. 12 14 (2018)
  34. Dupont G et al Biochim. Biophys. Acta 1498 134 (2000)
  35. Slaby O, Lebiedz D Biophys. J. 96 417 (2009)
  36. Atri A et al Biophys. J. 65 1727 (1993)
  37. Sveshnikova A N, Ataullakhanov F I, Panteleev M A Mol. Biosyst. 11 1052 (2015)
  38. Rink T J, Sage S O Annu. Rev. Physiol. 52 431 (1990)
  39. Sage S O et al J. Thrombos. Haemostas. 9 540 (2011)
  40. Keener J, Sneyd J Mathematical Physiology Pt. 1 (Interdisciplinary Applied Mathematics, Vol. 8, Eds J Keener, J Sneyd) (New York: Springer, 2009) p. 273
  41. Bezprozvanny I, Watras J, Ehrlich B E Nature 351 751 (1991)
  42. Lytton J et al J. Biol. Chem. 267 14483 (1992)
  43. Donahue B S, Abercrombie R F Cell Calcium 8 437 (1987)
  44. Sneyd J et al Proc. Natl. Acad. Sci. USA 101 1392 (2004)
  45. De Pittà M et al Phys. Rev. E 77 030903(R) (2008)
  46. De Young G W, Keizer J Proc. Natl. Acad. Sci. USA 89 9895 (1992)
  47. Gillespie D T Annu. Rev. Phys. Chem. 58 35 (2007)
  48. Gelens L, Huang K C, Ferrell J E (Jr.) Cell. Rep. 12 892 (2015)
  49. BalabF A, Sveshnikova A N Math. Biosci. 276 67 (2016)
  50. Murray J D Mathematical Biology (New York: Springer, 2002); Per. na angl. yaz., Myurrei D Matematicheskaya Biologiya (M.-Izhevsk: RKhD, 2009)
  51. Oancea E, Meyer T Cell 95 307 (1998)
  52. ViolJ D et al J. Cell Biol. 161 899 (2003)
  53. Rosse C et al Nature Rev. Mol. Cell Biol. 11 103 (2010)
  54. Kupzig S, Walker S A, Cullen P J Proc. Natl. Acad. Sci. USA 102 7577 (2005)
  55. Cullen P J, Lockyer P J Nature Rev. Mol. Cell Biol. 3 339 (2002)
  56. Magnus G, Keizer J Am. J. Physiol. 717 (1997)
  57. Pokhilko A V, Ataullakhanov F I, Holmuhamedov E L J. Theor. Biol. 243 152 (2006)
  58. Shakhidzhanov S S et al Biochim. Biophys. Acta 1850 2518 (2015)
  59. Obydennyy S I et al J. Thrombos. Haemostas. 14 1867 (2016)
  60. Sveshnikova A N et al J. Thrombos. Haemostas. 14 2045 (2016)
  61. Rudolf R et al Nature Rev. Mol. Cell Biol. 4 579 (2003)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions