Issues

 / 

2019

 / 

July

  

Reviews of topical problems


Nonclassical transport in highly heterogeneous and sharply contrasting media

 a, b,  a, b,  a, b
a Nuclear Safety Institute, Russian Academy of Sciences, ul. Bolshaya Tulskaya 52, Moscow, 115191, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation

The physical models of nonclassical transport processes in highly heterogeneous media with different types of spatial distribution of characteristics are reviewed. The transport in a regularly heterogeneous, fractal and statistically homogeneous sharply contrasting, as well as in liquid media under the condition of Rayleigh—Benard convection is considered. The behavior of the impurity concentration in the main localization region and at asymptotically large distances from the source is analyzed. The effect on the transport regimes arising due to the presence of colloids, as well as the barriers surrounding the impurity source, is investigated. An asymptotic approach to the calculation of the concentration in a medium with large-scale heterogeneities in the distribution of transport characteristics is presented.

Fulltext pdf (643 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.08.038423
Keywords: The physical models of nonclassical transport processes in highly heterogeneous media with different types of spatial distribution of characteristics are reviewed. The transport in a regularly heterogeneous, fractal and statistically homogeneous sharply contrasting, as well as in liquid media under the condition of Rayleigh€--€Benard convection is considered. The behavior of the impurity concentration in the main localization region and at asymptotically large distances from the source is analyzed. The effect on the transport regimes arising due to the presence of colloids, as well as the barriers surrounding the impurity source, is investigated. An asymptotic approach to the calculation of the concentration in a medium with large-scale heterogeneities in the distribution of transport characteristics is presented.
PACS: 005.60.Cd, 66.10.C−
DOI: 10.3367/UFNe.2018.08.038423
URL: https://ufn.ru/en/articles/2019/7/b/
000492057500002
2-s2.0-85076764312
2019PhyU...62..649B
Citation: Bol’shov L A, Kondratenko P S, Matveev L V "Nonclassical transport in highly heterogeneous and sharply contrasting media" Phys. Usp. 62 649–659 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, May 2018, revised: 13th, August 2018, 31st, August 2018

Оригинал: Большов Л А, Кондратенко П С, Матвеев Л В «Неклассический перенос в сильнонеоднородных и резко контрастных средах» УФН 189 691–702 (2019); DOI: 10.3367/UFNr.2018.08.038423

References (74) Cited by (7) Similar articles (20) ↓

  1. R.T. Sibatov, V.V. Uchaikin “Fractional differential approach to dispersive transport in semiconductorsPhys. Usp. 52 1019–1043 (2009)
  2. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusionPhys. Usp. 56 1074–1119 (2013)
  3. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficientsPhys. Usp. 58 252–285 (2015)
  4. O.G. Bakunin “Reconstruction of streamline topology, and percolation models of turbulent transportPhys. Usp. 56 243–260 (2013)
  5. V.P. Budaev, S.P. Savin, L.M. Zelenyi “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport featuresPhys. Usp. 54 875–918 (2011)
  6. L.A. Bol’shov, P.S. Kondratenko, V.F. Strizhov “Natural convection in heat-generating fluidsPhys. Usp. 44 999–1016 (2001)
  7. A.M. Bykov, I.N. Toptygin “Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)Phys. Usp. 36 (11) 1020–1052 (1993)
  8. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamicsPhys. Usp. 47 749–788 (2004)
  9. L.A. Bol’shov, A.P. Napartovich et alSubmonolayer films on the surface of metalsSov. Phys. Usp. 20 432–451 (1977)
  10. A.V. Eletskii, A.A. Knizhnik et alElectrical characteristics of carbon nanotube doped compositesPhys. Usp. 58 209–251 (2015)
  11. A.A. Chernyshov, K.V. Karelsky, A.S. Petrosyan “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmasPhys. Usp. 57 421–452 (2014)
  12. V.V. Zosimov, L.M. Lyamshev “Fractals in wave processesPhys. Usp. 38 347–384 (1995)
  13. M.O. Denisova, A.L. Zuev, K.G. Kostarev “Oscillatory modes of concentration convectionPhys. Usp. 65 767–788 (2022)
  14. B.D. Agap’ev, M.B. Gornyi et alCoherent population trapping in quantum systemsPhys. Usp. 36 (9) 763–793 (1993)
  15. S.L. Sobolev “Transport processes and traveling waves in systems with local nonequilibriumSov. Phys. Usp. 34 (3) 217–229 (1991)
  16. G.N. Makarov “Laser IR fragmentation of molecular clusters: the role of channels for energy input and relaxation, influence of surroundings, dynamics of fragmentationPhys. Usp. 60 227–258 (2017)
  17. G.B. Lesovik, I.A. Sadovskyy “Scattering matrix approach to the description of quantum electron transportPhys. Usp. 54 1007–1059 (2011)
  18. Yu.Kh. Vekilov, M.A. Chernikov “QuasicrystalsPhys. Usp. 53 537–560 (2010)
  19. A.V. Eletskii “Transport properties of carbon nanotubesPhys. Usp. 52 209–224 (2009)
  20. V.N. Bezmel’nitsyn, A.V. Eletskii, M.V. Okun’ “Fullerenes in solutionsPhys. Usp. 41 1091–1114 (1998)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions