Issues

 / 

2019

 / 

June

  

Methodological notes


Can glassforming liquids be 'simple'?


Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation

The tendency of various types of liquids to vitrify at moderate cooling rates is discussed. Good glass-forming liquids—covalent melts, polymer and organic liquids—feature high viscosity values of $10^{-2}$—$10^7$ Pa s at temperatures close to melting point. The glasses obtained by cooling such liquids are nonergodic systems, i.e. their properties are not unambiguously defined by external parameters. At the same time, many glass-forming molecular liquids are usually considered as 'simple' systems described by an effective pair central potential of interaction between particles. In particular, the scaling of thermodynamic and transport characteristics for varying temperature and density and behavior under pressure of the melting temperature and the bulk modulus of molecular liquids are well described by the parameters of a simple effective pair potential. It is shown that the values of the viscosity of glassy molecular liquids in no way correspond to the effective-potential parameters (in contrast to viscosity of the true 'simple' fluids such as liquefied inert gases). Due to the complex structure of the molecules of such liquids, the effective-potential parameters heavily depend on the distance between particles. A complex set of intermolecular and interatomic chemical bonding emerges when such liquids are vitrified. Thus, glass-forming molecular liquids can only be considered as 'simple' from the point of view of their thermodynamic properties, while the polyatomic structure of their molecules results in 'complex' behavior of transport characteristics and anomalously high viscosity values.

Fulltext is available at IOP
Keywords: liquids, vitrification, ergodicity, viscosity, scaling, intermolecular interaction
PACS: 64.70.P−, 65.20.De, 66.20.Cy (all)
DOI: 10.3367/UFNe.2018.06.038382
URL: https://ufn.ru/en/articles/2019/6/f/
Citation: Brazhkin V V "Can glassforming liquids be 'simple'?" Phys. Usp. 62 623–629 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 5th, April 2018, revised: 27th, May 2018, 19th, June 2018

Оригинал: Бражкин В В «Могут ли стеклообразующие жидкости быть "простыми"?» УФН 189 665–672 (2019); DOI: 10.3367/UFNr.2018.06.038382

References (40) ↓ Cited by (3) Similar articles (16)

  1. Tropin T V, Shmel’tser Yu V P, Aksenov V L Usp. Fiz. Nauk 186 47 (2016); Tropin T V, Schmelzer Ju W P, Aksenov V L Phys. Usp. 59 42 (2016)
  2. Feltz A Amorphe Und Glasartige Anorganische Festkörper (Berlin: Akademie-Verlag, 1983); Per. na angl. yaz., Feltz A Amorphous Inorganic Materials And Glasses (Weinheim: VCH, 1993); Per. na russk. yaz., Fel’ts A Amorfnye i Stekloobraznye Neorganicheskie Tverdye Tela (M.: Mir, 1986)
  3. Mokshin A V, Galimzyanov B N J. Chem. Phys. 142 104502 (2015)
  4. Brazhkin V V Usp. Fiz. Nauk 176 745 (2006); Brazhkin V V Phys. Usp. 49 719 (2006)
  5. Brazhkin V V J. Phys. Condens. Matter 18 9643 (2006)
  6. Gupta P K, Mauro J C J. Chem. Phys. 126 224504 (2007)
  7. Mauro J C, Loucks R J, Gupta P K J. Am. Ceram. Soc. 92 75 (2009)
  8. Levelut C et al J. Non-Cryst. Solids 352 4495 (2006)
  9. Ruta B et al Nature Commun. 5 3939 (2014)
  10. Smedskjaer M M et al Sci. Rep. 4 3770 (2014)
  11. Smedskjaer M M et al J. Chem. Phys. 143 164505 (2015)
  12. Wondraczek L et al Phys. Rev. B 76 014202 (2007)
  13. Wondraczek L et al J. Am. Ceram. Soc. 90 1556 (2007)
  14. Prigogine I, Defay R Chemical Thermodynamics (London: Longmans, 1954)
  15. Davies R O, Jones G O Adv. Phys. 2 370 (1953)
  16. Fragiadakis D, Roland C M J. Chem. Phys. 147 084508 (2017)
  17. Gundermann D et al Nature Phys. 7 816 (2011)
  18. Gnan N et al Phys. Rev. Lett. 104 125902 (2010)
  19. Stishov S M Usp. Fiz. Nauk 114 3 (1974); Strishov S M Sov. Phys. Usp. 18 625 (1975)
  20. Hoover W G, Gray S G, Johnson K W J. Chem. Phys. 55 1128 (1971)
  21. Agrawal R, Kofke D A Phys. Rev. Lett. 74 122 (1995)
  22. Hiwatari Y et al Prog. Theor. Phys. 52 1105 (1974)
  23. Zhakhovskii V V Zh. Eksp. Teor. Fiz. 105 1615 (1994); Zhakhovskii V V JETP 78 871 (1994)
  24. Stishov S M Zh. Eksp. Teor. Fiz. 130 276 (2006); Stishov S M JETP 103 241 (2006)
  25. Roland C M et al Rep. Prog. Phys. 68 1405 (2005)
  26. Fragiadakis D, Roland C M Phys. Rev. E 83 031504 (2011)
  27. Lyapin A G, Gromnitskaya E L, Danilov I V, Brazhkin V V RSC Adv. 7 33278 (2017)
  28. Bailey N P et al J. Chem. Phys. 129 184507 (2008)
  29. Gnan N et al J. Chem. Phys. 131 234504 (2009)
  30. Ingebrigtsen T S, Schröder T B, Dyre J C Phys. Rev. X 2 011011 (2012)
  31. Coslovich D, Roland C M J. Non-Cryst. Solids 357 397 (2011)
  32. Dyre J C J. Phys. Condens. Matter 28 323001 (2016)
  33. Grzybowski A et al J. Phys. Chem. B 114 11544 (2010)
  34. Böhling L et al New J. Phys. 14 113035 (2012)
  35. Danilov I V, Gromnitskaya E L, Brazhkin V V J. Phys. Chem. B 120 7593 (2016)
  36. Casalini R, Roland C M J. Non-Cryst. Solids 475 25 (2017)
  37. Meier K "Computer simulation and interpretation of the transport coefficients of the Lennard-Jones model fluid" PhD Thesis (Hamburg: Helmut Schmidt Univ., 2002)
  38. NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/
  39. Mourits F M, Rummens F H A Can. J. Chem. 55 3007 (1977)
  40. Dembovskii S A, Chechetkina E A Stekloobrazovanie (M.: Nauka, 1990)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions