Methodological notes

Green's function method in the theory of Brownian motors

 a,  b,  c, d
a Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Ghenerala Naumova str. 17, Kiev, 03164, Ukraine
b Belarussian State University, prosp. F. Scoriny 4, Minsk, 220050, Belarus
c Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation
d Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation

We present the main results of the theory of Brownian motors obtained using the author approach in which a Brownian particle moving in a slightly fluctuating potential profile is considered. By the Green's function method, the perturbation theory in small fluctuations of potential energy is constructed. This approach allows obtaining an analytical expression for the average particle velocity that is valid for two main types of Brownian motors (flashing and rocking ratchets) and any (stochastic or deterministic) time dependence of the fluctuations. The advantage of the proposed approach lies in the compactness of the description and, at the same time, in the variety of motor systems analyzed with its help: the overwhelming majority of known analytical results in the theory of Brownian motors follow from this expression. The mathematical derivations and analysis of those results forms the main content of these methodological notes.

Fulltext is available at IOP
Keywords: Brownian motors, ratchets, driven diffusive systems, Green's functions
PACS: 05.40.−a, 05.60.Cd (all)
DOI: 10.3367/UFNe.2018.04.038347
Citation: Rozenbaum V M, Shapochkina I V, Trakhtenberg L I "Green's function method in the theory of Brownian motors" Phys. Usp. 62 496–509 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, November 2017, revised: 19th, April 2018, 23rd, April 2018

Оригинал: Розенбаум В М, Шапочкина И В, Трахтенберг Л И «Метод функций Грина в теории броуновских моторов» УФН 189 529–543 (2019); DOI: 10.3367/UFNr.2018.04.038347

References (85) Cited by (16) Similar articles (20) ↓

  1. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem30 134–152 (1987)
  2. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theory63 407–411 (2020)
  3. A.A. Snarskii “Did Maxwell know about the percolation threshold? (on the fiftieth anniversary оf percolation theory)50 1239–1242 (2007)
  4. O.G. Bakunin “Correlation and percolation properties of turbulent diffusion46 733–744 (2003)
  5. B.M. Bolotovskii, A.V. Serov “Special features of motion of particles in an electromagnetic wave46 645–655 (2003)
  6. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandings56 590–602 (2013)
  7. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systems51 395–407 (2008)
  8. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particles42 573–590 (1999)
  9. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formula30 168–171 (1987)
  10. A.A. Abrashkin, E.N. Pelinovsky “On the relation between Stokes drift and the Gerstner wave61 307–312 (2018)
  11. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentum63 57–65 (2020)
  12. Yu.Kh. Vekilov, O.M. Krasil’nikov, A.V. Lugovskoy “Elastic properties of solids at high pressure58 1106–1114 (2015)
  13. I.I. Sobel’man “On the theory of light scattering in gases45 75–80 (2002)
  14. S.E. Kuratov, D.S. Shidlovski et alTwo scales of quantum effects in a mesoscopic system of degenerate electrons64 836–851 (2021)
  15. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservation57 593–596 (2014)
  16. E.A. Nelin “Impedance model for quantum-mechanical barrier problems50 293–299 (2007)
  17. V.I. Klyatskin, K.V. Koshel’ “Simple example of the development of cluster structure of a passive tracer field in random flows43 717–723 (2000)
  18. G.A. Martynov “Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamics39 1045–1070 (1996)
  19. V.N. Tsytovich “Collective effects of plasma particles in bremsstrahlung38 87–108 (1995)
  20. A.V. Belinskii “Bell’s theorem without the hypothesis of locality37 219–222 (1994)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions