Issues

 / 

2019

 / 

May

  

Methodological notes


Green's function method in the theory of Brownian motors

 a,  b,  c, d
a Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Ghenerala Naumova str. 17, Kiev, 03164, Ukraine
b Belarussian State University, prosp. Nezavisimosti 4, Minsk, 220030, Belarus
c Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation
d Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation

We present the main results of the theory of Brownian motors obtained using the author approach in which a Brownian particle moving in a slightly fluctuating potential profile is considered. By the Green's function method, the perturbation theory in small fluctuations of potential energy is constructed. This approach allows obtaining an analytical expression for the average particle velocity that is valid for two main types of Brownian motors (flashing and rocking ratchets) and any (stochastic or deterministic) time dependence of the fluctuations. The advantage of the proposed approach lies in the compactness of the description and, at the same time, in the variety of motor systems analyzed with its help: the overwhelming majority of known analytical results in the theory of Brownian motors follow from this expression. The mathematical derivations and analysis of those results forms the main content of these methodological notes.

Fulltext pdf (734 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.04.038347
Keywords: Brownian motors, ratchets, driven diffusive systems, Green's functions
PACS: 05.40.−a, 05.60.Cd (all)
DOI: 10.3367/UFNe.2018.04.038347
URL: https://ufn.ru/en/articles/2019/5/e/
000477641200005
2-s2.0-85070662806
2019PhyU...62..496R
Citation: Rozenbaum V M, Shapochkina I V, Trakhtenberg L I "Green's function method in the theory of Brownian motors" Phys. Usp. 62 496–509 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, November 2017, revised: 19th, April 2018, 23rd, April 2018

Оригинал: Розенбаум В М, Шапочкина И В, Трахтенберг Л И «Метод функций Грина в теории броуновских моторов» УФН 189 529–543 (2019); DOI: 10.3367/UFNr.2018.04.038347

References (85) Cited by (25) Similar articles (20) ↓

  1. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motorsPhys. Usp. 67 (10) (2024)
  2. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  3. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  4. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  5. P.S. Kondratenko, L.V. Matveev “Asymptotic theory of classical impurity transport in an inhomogeneous and non-stationary media. Hamilton’s formalismPhys. Usp., accepted
  6. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theoryPhys. Usp. 63 407–411 (2020)
  7. A.A. Snarskii “Did Maxwell know about the percolation threshold? (on the fiftieth anniversary оf percolation theory)Phys. Usp. 50 1239–1242 (2007)
  8. O.G. Bakunin “Correlation and percolation properties of turbulent diffusionPhys. Usp. 46 733–744 (2003)
  9. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  10. B.M. Bolotovskii, A.V. Serov “Special features of motion of particles in an electromagnetic wavePhys. Usp. 46 645–655 (2003)
  11. G.N. Bochkov, Yu.E. Kuzovlev “Fluctuation-dissipation relations: achievements and misunderstandingsPhys. Usp. 56 590–602 (2013)
  12. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  13. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  14. A.A. Abrashkin, E.N. Pelinovsky “On the relation between Stokes drift and the Gerstner wavePhys. Usp. 61 307–312 (2018)
  15. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentumPhys. Usp. 63 57–65 (2020)
  16. Yu.Kh. Vekilov, O.M. Krasil’nikov, A.V. Lugovskoy “Elastic properties of solids at high pressurePhys. Usp. 58 1106–1114 (2015)
  17. I.I. Sobel’man “On the theory of light scattering in gasesPhys. Usp. 45 75–80 (2002)
  18. S.E. Kuratov, D.S. Shidlovski et alTwo scales of quantum effects in a mesoscopic system of degenerate electronsPhys. Usp. 64 836–851 (2021)
  19. S.P. Efimov “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problemPhys. Usp. 65 952–967 (2022)
  20. A.M. Gaifullin, V.V. Zhvick “Laminar submerged jets of incompressible fluid at large Reynolds numbersPhys. Usp. 66 1142–1153 (2023)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions