Issues

 / 

2019

 / 

May

  

Methodological notes


Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)

 a, b, c,  a, b
a Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5/1, Moscow, 105005, Russian Federation

The frequently used Maxwell equations that contain E, B, D and H fields are only substantiated in the framework of linear material equations and for isotropic media alone. We have shown that the account of the deviation of magnetic permittivity $\mu(\omega)$ verse waves only exist in the energy region where $\epsilon(\omega)$ and have a positive group velocity.

Fulltext pdf (514 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.01.038522
Keywords: conductivity tensor, dielectric permittivity tensor, isotropic media, electric and magnetic permittivity, phase and group velocity of transverse electromagnetic wave
PACS: 03.50.De, 41.20.Jb (all)
DOI: 10.3367/UFNe.2019.01.038522
URL: https://ufn.ru/en/articles/2019/5/d/
000477641200004
2-s2.0-85072522957
2019PhyU...62..487M
Citation: Makarov V P, Rukhadze A A "Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)" Phys. Usp. 62 487–495 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, July 2017, revised: 27th, December 2018, 17th, January 2019

Оригинал: Макаров В П, Рухадзе А А «Материальные уравнения и уравнения Максвелла для изотропных сред; волны с отрицательной групповой скоростью и отрицательные значения ε(ω) и μ(ω)» УФН 189 519–528 (2019); DOI: 10.3367/UFNr.2019.01.038522

References (21) Cited by (2) Similar articles (20) ↓

  1. Yu.A. Spirichev “On choosing the energy—momentum tensor in electrodynamics and on the Abraham forcePhys. Usp. 61 303–306 (2018)
  2. I.N. Toptygin, K. Levina “Energy—momentum tensor of the electromagnetic field in dispersive mediaPhys. Usp. 59 141–152 (2016)
  3. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic mediaPhys. Usp. 54 145–165 (2011)
  4. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic fieldPhys. Usp. 52 937–943 (2009)
  5. A.V. Kukushkin, A.A. Rukhadze, K.Z. Rukhadze “On the existence conditions for a fast surface wavePhys. Usp. 55 1124–1133 (2012)
  6. N.V. Selina “Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lensPhys. Usp. 65 406–414 (2022)
  7. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting platePhys. Usp. 53 595–609 (2010)
  8. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction mediumPhys. Usp. 52 649–654 (2009)
  9. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic mediaPhys. Usp. 51 363–374 (2008)
  10. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent mediaPhys. Usp. 60 935–947 (2017)
  11. A.V. Vashkovsky, E.H. Lock “On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structuresPhys. Usp. 54 281–290 (2011)
  12. A.G. Shalashov, E.D. Gospodchikov “Structure of the Maxwell equations in the region of linear coupling of electromagnetic waves in weakly inhomogeneous anisotropic and gyrotropic mediaPhys. Usp. 55 147–160 (2012)
  13. A.V. Vashkovskii, E.H. Lock “Negative refractive index for a surface magnetostatic wave propagating through the boundarybetween a ferrite and ferrite-insulator-metal mediaPhys. Usp. 47 601–605 (2004)
  14. A.M. Ignatov, A.I. Korotchenko et alOn the interpretation of computer simulation of classical Coulomb plasmaPhys. Usp. 38 109–114 (1995)
  15. A.P. Vinogradov “On the form of constitutive equations in electrodynamicsPhys. Usp. 45 331–338 (2002)
  16. M.V. Kuzelev, A.A. Rukhadze “Waves in inhomogeneous plasmas and liquid and gas flows. Analogies between electro- and gas-dynamic phenomenaPhys. Usp. 61 748–764 (2018)
  17. S.G. Arutyunyan “Electromagnetic field lines of a point charge moving arbitrarily in vacuumSov. Phys. Usp. 29 1053–1057 (1986)
  18. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamicsSov. Phys. Usp. 16 434–439 (1973)
  19. A.I. Frank “Interaction of a wave with an accelerating object and the equivalence principlePhys. Usp. 63 500–502 (2020)
  20. E.H. Lock, S.V. Gerus “Electromagnetic waves in a tangentially magnetized bi-gyrotropic layer (with an example of analysis of spin wave characteristics in a ferrite plate)Phys. Usp. 67 (12) (2024)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions