Issues

 / 

2019

 / 

February

  

Conferences and symposia


Nontraditional synthesis of nano- and microcrystal diamonds under high static pressures

,
Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

Diamond synthesis from organic materials under high pressure performed for the first time more than half a century ago is now in high demand for the needs of nanoelectronics and biomedicine due to the possibility of obtaining nanodiamonds of high structural perfection. Institute for High Pressure Physics RAS being a pioneer in diamond synthesis in metallic solutions and unconventional media is a recognized leader in the promotion of new trends in the synthesis of nanodiamonds free from metallic impurities. In this short review we consider a most likely scenario of hydrocarbon carbonization with the formation of nano- and microcrystal diamonds.

Fulltext pdf (940 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.04.038375
Keywords: diamonds, synthesis, high pressure, organic compounds, nanodiamonds
PACS: 62.50.−p, 81.05.ug, 81.40.Vw (all)
DOI: 10.3367/UFNe.2018.04.038375
URL: https://ufn.ru/en/articles/2019/2/g/
000466030200007
2-s2.0-85067784446
2019PhyU...62..199E
Citation: Ekimov E A, Kondrin M V "Nontraditional synthesis of nano- and microcrystal diamonds under high static pressures" Phys. Usp. 62 199–206 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, July 2018, 25th, April 2018

Оригинал: Екимов Е А, Кондрин М В «Нетрадиционный синтез нано- и микрокристаллических алмазов при высоких статических давлениях» УФН 189 208–216 (2019); DOI: 10.3367/UFNr.2018.04.038375

References (61) ↓ Cited by (6) Similar articles (10)

  1. Wentorf R H (Jr.) J. Phys. Chem. 69 3063 (1965)
  2. Danilenko V V Fiz. Tverd. Tela 46 581 (2004); Danilenko V V Phys. Solid State 46 595 (2004)
  3. Pezzagna S et al New J. Phys. 13 035024 (2011)
  4. Aharonovich I et al Rep. Prog. Phys. 74 076501 (2011)
  5. Ekimov E A, Kondrin M V Usp. Fiz. Nauk 187 577 (2017); Ekimov E A, Kondrin M V Phys. Usp. 60 539 (2017)
  6. Jantzen U et al New J. Phys. 18 073036 (2016)
  7. Sumiya H et al J. Cryst. Growth 178 485 (1997)
  8. Kiflawi I, Kanda H, Lawson S C Diamond Related Mater. 11 204 (2002)
  9. Charles S J et al Phys. Status Solidi A 201 2473 (2004)
  10. Field J E (Ed.) The Properties Of Natural And Synthetic Diamond (London: Academic Press, 1992)
  11. Zaitsev A M Optical Properties Of Diamond. A Data Handbook (Berlin: Springer, 2001)
  12. Yakovlev E N, Voronov O A Almazy Sverkhtverdye Materialy (7) 1 (1982)
  13. Yakovlev E N, Voronov O A, Rakhmanina A Sverkhtverdye Materialy (4) 8 (1984)
  14. Yakovlev E N i dr Zhurn. Fiz. Khim. 59 1517 (1985)
  15. Astakhov M, Ziganshina R, Shalimov M Izv. Vuzov. Chernaya Metallurgiya (3) 15 (1993)
  16. Voronov O A, Rakhmanina A V Neorgan. Materialy 29 623 (1993); Voronov O A, Rakhmanina A V Inorg. Mater. 29 533 (1993)
  17. Voronov O A i dr "Sposob sinteza legirovannykh almazov" Avtorskoe svidetel’stvo SU1345581A (1985)
  18. Kenney J F et al Proc. Natl. Acad. Sci. USA 99 10976 (2002)
  19. Spanu L et al Proc. Natl. Acad. Sci. USA 108 6843 (2011)
  20. Benedetti L R et al Science 286 100 (1999)
  21. Zerr A et al High Press. Res. 26 23 (2006)
  22. Kolesnikov A, Kutcherov V G, Goncharov A F Nature Geosci. 2 566 (2009)
  23. Lobanov S S et al Nature Commun. 4 2446 (2013)
  24. Ree F H J. Chem. Phys. 70 974 (1979)
  25. Hirai H et al Phys. Earth Planet. Interiors 174 242 (2009)
  26. Sokol A G et al Diamond Related Mater. 10 2131 (2001)
  27. Chanyshev A D et al Cryst. Growth Des. 18 3016 (2018)
  28. Kondrin M V et al CrystEngComm 19 958 (2017)
  29. Antonov V E et al Carbon 100 465 (2016)
  30. Onodera A, Higashi K, Irie Y J. Mater. Sci. 23 422 (1988)
  31. Onodera A, Suito K Science and Technology of High Pressure. Proc. of the Intern. Conf. on High Pressure Sciene and Technology, AIRAPT-17, Honolulu, Hawaii, 25 - 30 July, 1999 (Eds M H Manghnani, W J Nellis, M F Nicol) (Hyderabad: Univ. Press, 2000)
  32. Higashi K, Onodera A Physica B 139-140 813 (1986)
  33. Sumiya H et al J. Mater. Sci. 39 445 (2004)
  34. Le Guillou C et al Carbon 45 636 (2007)
  35. Sumiya H, Harano K, Irifune T Rev. Sci. Instrum. 79 056102 (2008)
  36. Shatskiy A et al Rev. Sci. Instrum. 80 023907 (2009)
  37. Sumiya H et al Diamond Related Mater. 70 7 (2016)
  38. Iwasaki T et al Phys. Rev. Lett. 119 253601 (2017)
  39. Ekimov E A, Lyapin S G, Kondrin M V Diamond Related Mater. 87 223 (2018)
  40. Trusheim M E et al arXiv:1805.12202
  41. Magyar A et al Nature Commun. 5 3523 (2014)
  42. Sedov V S et al Diamond Related Mater. 72 47 (2017)
  43. Ekimov E A et al Mater. Lett. 193 130 (2017)
  44. Davydov V A i dr Pis’ma ZhETF 99 673 (2014); Davydov V A et al JETP Lett. 99 585 (2014)
  45. Ekimov E A et al Pis’ma ZhETF 102 811 (2015); Ekimov E A et al JETP Lett. 102 701 (2015)
  46. Ekimov E A et al Phys. Rev. B 95 094113 (2017)
  47. Ekimov E A et al Phys. Rev. B 97 045206 (2018)
  48. Ekimov E A et al Adv. Mater. 27 5518 (2015)
  49. Ekimov E et al Phys. Status Solidi A 213 2582 (2016)
  50. Ekimov E A et al ChemNanoMat 4 269 (2018)
  51. Onodera A, Suito K, Morigami Y Proc. Jpn. Acad. B 68 167 (1992)
  52. Voronov O A, Rakhmanina A V Neorganicheskie Materialy 33 735 (1997); Voronov O A, Rakhmanina A V Inorg. Mater. 33 375 (1997)
  53. Voronov O A, Rakhmanina A V Neorganicheskie Materialy 28 1408 (1992); Voronov O A, Rakhmanina A V Inorg. Mater. 28 1113 (1992)
  54. Voronov O A i dr Dokl. Akad. Nauk SSSR 274 100 (1984)
  55. Davydov V A et al Carbon 42 261 (2004)
  56. Davydov V A et al Carbon 44 2015 (2006)
  57. Pal’yanov Yu N et al Nature 400 417 (1999)
  58. Davydov V A et al Carbon 90 231 (2015)
  59. Bundy F P J. Chem. Phys. 38 631 (1963)
  60. Sumiya H SEI Tech. Rev. (74) 15 (2012)
  61. Kondrina K M et al Diamond Related Mater. 83 190 (2018)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions