Issues

 / 

2019

 / 

December

  

Physics of our days


Magnetic helicity and prospects for its observation in the interstellar medium

 a, b,  c, d
a Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, ul. akad. Koroleva 1, Perm, 614013, Russian Federation
b Perm National Research Polytechnic University, Komsomol'skii prosp. 29, Perm, 614990, Russian Federation
c Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
d Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Kaluzhskoe shosse 4, Troitsk, Москва, 108840, Russian Federation

Magnetic helicity is one of the integrals of non-viscous flows in magnetohydrodynamics that determines the number of linkage of magnetic field lines in a medium. It belongs to a number of helicities that characterize the degree of mirror asymmetry of velocity and magnetic fields. The helicities plays a crucial role in driving the generation of large-scale magnetic fields in stars and spiral galaxies. Until recently, measurements of various helicities were based on astronomical observations of the Sun's active regions, but not in the Sun's deep layers where the solar dynamo is operative. Galaxies are transparent to some extent, therefore, are very attractive in this sense to observe the helicity of its magnetic field. Theoretical advances and first successful attempts of such observations are reviewed.

Fulltext pdf (246 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.12.038503
Keywords: galactic magnetic fields, magnetic helicity, astrophysical observations, synchrotron emission, Faraday rotation, dynamo theory
PACS: 47.65.Md, 95.85.Sz, 98.35.Eg (all)
DOI: 10.3367/UFNe.2018.12.038503
URL: https://ufn.ru/en/articles/2019/12/b/
000518758100002
2-s2.0-85082025413
Citation: Stepanov R A, Sokoloff D D "Magnetic helicity and prospects for its observation in the interstellar medium" Phys. Usp. 62 1208–1213 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, November 2018, 19th, December 2018

Оригинал: Степанов Р А, Соколов Д Д «Магнитная спиральность и перспективы её наблюдения в межзвёздной среде» УФН 189 1285–1291 (2019); DOI: 10.3367/UFNr.2018.12.038503

References (39) ↓ Cited by (3) Similar articles (4)

  1. Einstein A Naturwissenschaften 14 223 (1926); Per. na russk. yaz., Einshtein A Usp. Fiz. Nauk 59 185 (1956)
  2. Lee T D "Weak interaction and nonconservation of parity (Nobel lecture. December 11, 1957)" Nobel Lectures: Physics: 1901 - 1995 (Singapore: World Scientific) p. 406, CD-ROM; Per. na russk. yaz., Li Ts Usp. Fiz. Nauk 66 89 (1958)
  3. Parker E N Astrophys. J. 122 293 (1955)
  4. Steenbeck M, Krause F, Rädler K-H Z. Naturforsch. A 21 369 (1966)
  5. Sokolov D D Usp. Fiz. Nauk 185 643 (2015); Sokoloff D D Phys. Usp. 58 601 (2015)
  6. Sokolov D D, Stepanov R A, Frik P G Usp. Fiz. Nauk 184 313 (2014); Sokoloff D D, Stepanov R A, Frick P G Phys. Usp. 57 292 (2014)
  7. Thomson W Trans. R. Soc. Edinburgh 25 217 (1868)
  8. Moffatt H K J. Fluid Mech. 35 117 (1969)
  9. Arnold V I Selecta Math. Sov. 5 327 (1986)
  10. Seehafer N Solar Phys. 125 219 (1990)
  11. Zhang H Mon. Not. R. Astron. Soc. 402 L30 (2010)
  12. Moffatt H K Magnetic Field Generation In Electrically Conducting Fluids (Cambridge: Cambridge Univ. Press, 1978)
  13. Subramanian K, Brandenburg A Astrophys. J. 648 L71 (2006)
  14. Zhang H, Brandenburg A, Sokoloff D D Astrophys. J. 819 146 (2016)
  15. Komm R, Gosain S Astrophys. J. 798 20 (2015)
  16. Tlatov A Mon. Not. R. Astron. Soc. 432 2975 (2013)
  17. Beck R Annu. Rev. Astron. Astrophys. 34 155 (1996)
  18. Sokoloff D D Mon. Not. R. Astron. Soc. 299 189 (1998)
  19. Brandenburg A, Stepanov R Astrophys. J. 786 91 (2014)
  20. Burn B J Mon. Not. R. Astron. Soc. 133 67 (1966)
  21. Brentjens M A, de Bruyn A G Astron. Astrophys. 441 1217 (2005)
  22. Frick P et al Mon. Not. R. Astron. Soc. 414 2540 (2011)
  23. Bell M R, Enßlin T A Astron. Astrophys. 540 A80 (2012)
  24. Sun X H et al Astron. J. 149 60 (2015)
  25. Heald G, Braun R, Edmonds R Astron. Astrophys. 503 409 (2009)
  26. Beck R et al Astron. Astrophys. 543 A113 (2012)
  27. Kahniashvili T New Astron. Rev. 50 1015 (2006)
  28. Kahniashvili T, Vachaspati T Phys. Rev. D 73 063507 (2006)
  29. Volegova A A, Stepanov R A Pis’ma ZhETF 90 707 (2009); Volegova A A, Stepanov R A JETP Lett. 90 637 (2009)
  30. Junklewitz H, Enßlin T A Astron. Astrophys. 530 A88 (2011)
  31. Bell M R, Junklewitz H, Enßlin T A Astron. Astrophys. 535 A85 (2011)
  32. Frick P et al Mon. Not. R. Astron. Soc. 401 L24 (2010)
  33. Brandenburg A, Ashurova M B, Jabbari S Astrophys. J. 845 L15 (2017)
  34. Bucciantini N Mon. Not. R. Astron. Soc. 471 4885 (2017)
  35. Verkhodanov O V Usp. Fiz. Nauk 186 3 (2016); Verkhodanov O V Phys. Usp. 59 3 (2016)
  36. Oppermann N et al Astron. Astrophys. 575 A118 (2015)
  37. West J et al The Power of Faraday Tomography-Towards 3D Mapping of Cosmic Magnetic Fields, May 28 - June 2, 2018, Miyazaki, Japan (2018); West J et al http://ska-jp.org/ws/SKAJP_MAGWS2018/index.html
  38. Iacobelli M, Haverkorn M, Katgert P Astron. Astrophys. 549 A56 (2013)
  39. Van Eck C L et al Astron. Astrophys. 597 A98 (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions