Issues

 / 

2019

 / 

November

  

Physics of our days


Nonlinear compression of high-power laser pulses: compression after compressor approach

 a,  a,  b
a Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
b International Center for Zetta-Exawatt Science and Technology, Route de Saclay, Palaiseau, F-91128, France

The peak power of present-day lasers is limited by the pulse energy that the diffraction gratings of an optical compressor can withstand. A promising method to overcome this limitation is reviewed: the pulse power is increased due to shortening its duration rather than enhancing pulse energy. It is of importance that the pulse is shortened after passing a compressor (Compression after Compressor Approach (CafCA)). To this end, the pulse spectrum is stretched as a result of self-phase modulation, and the pulse is compressed then by dispersion mirrors. Application of this idea known since the 1960s to lasers whose power is over 1 TW has been restrained until recently by a number of physical problems. These problems and possible ways of their solution are discussed in detail. The experimental results obtained over the past few years demonstrate the efficiency of the technique (compression by a factor of 5) in the range up to 250 TW. CafCA features three undisputed merits: simplicity and low cost, negligible pulse-energy loss, and applicability to any high-power laser.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.05.038564
Keywords: ultrahigh power femtosecond lasers, phase self-modulation, nonlinear laser pulse compression, small-scale self-focusing
PACS: 42.55.−f, 42.65.Jx, 42.65.Rc (all)
DOI: 10.3367/UFNe.2019.05.038564
URL: https://ufn.ru/en/articles/2019/11/b/
000518757700002
2-s2.0-85078722536
Citation: Khazanov E A, Mironov S Yu, Mourou G "Nonlinear compression of high-power laser pulses: compression after compressor approach" Phys. Usp. 62 1096–1124 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, May 2019, 22nd, May 2019

Оригинал: Хазанов Е А, Миронов С Ю, Муру Ж «Нелинейное сжатие сверхмощных лазерных импульсов: компрессия после компрессора» УФН 189 1173–1200 (2019); DOI: 10.3367/UFNr.2019.05.038564

References (233) Cited by (83) ↓ Similar articles (18)

  1. Huang J, Lu X et al Laser & Photonics Reviews (2024)
  2. Zheltikov A M Phys. Rev. A 109 (1) (2024)
  3. Lorenz S, Grittani G M et al High Pow Laser Sci Eng 12 (2024)
  4. Mironov S Yu, Khazanov E A Uspekhi Fizicheskikh Nauk 194 106 (2024)
  5. [Mironov S Yu, Khazanov E A Phys. Usp. 67 99 (2024)]
  6. Zheltikov A M Phys. Rev. A 110 (2) (2024)
  7. DUMITRU MIHALACHE Rom. Rep. Phys. 76 402 (2024)
  8. Kato Y, Kawachi T et al Springer Proceedings In Physics Vol. X-Ray Lasers 2023Advancing X-Ray Lasers and Intense X-Ray Sources with Ultrashort-Pulse, High-Intensity Lasers403 Chapter 1 (2024) p. 1
  9. Soloviev A A, Burdonov K F et al Uspekhi Fizicheskikh Nauk 194 313 (2024)
  10. [Soloviev A A, Burdonov K F et al Phys. Usp. 67 293 (2024)]
  11. Mironov S Yu, Ginzburg V N et al Appl. Opt. 63 4421 (2024)
  12. Zheltikov A M, Sokolov A V et al Appl. Phys. B 130 (11) (2024)
  13. Drake Ja, Tamer I, Kiani L CLEO 2024, (2024) p. JW2A.13
  14. Gao Z, Guo J et al Optics & Laser Technology 175 110714 (2024)
  15. Horný V, Bleotu P G et al Phys. Rev. E 110 (3) (2024)
  16. Guo J, Guo L et al Opt. Lett. 49 4385 (2024)
  17. Zheltikov A M Physics Letters A 505 129432 (2024)
  18. Vays O E, Lobok M G et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 118 871 (2023)
  19. Popruzhenko S V, Fedotov A M Uspekhi Fizicheskikh Nauk 193 491 (2023)
  20. [Popruzhenko S V, Fedotov A M Phys. Usp. 66 460 (2023)]
  21. Mukhin I B, Glushkov K A et al Appl. Opt. 62 2554 (2023)
  22. Khazanov E Laser Phys. Lett. 20 125001 (2023)
  23. Kostyukov I Yu, Khazanov E A et al Bull. Lebedev Phys. Inst. 50 S635 (2023)
  24. Sladkov A D, Korzhimanov A V Photonics 10 108 (2023)
  25. Yang X, Tang X et al Opt. Express 31 33753 (2023)
  26. Shang J, Mei Ch et al Opt. Express 31 1181 (2023)
  27. Zen H, Hajima R, Ohgaki H Opt. Express 31 40928 (2023)
  28. Khazanov E, Shaykin A et al High Pow Laser Sci Eng 11 (2023)
  29. Ginzburg V, Martyanov M et al Opt. Express 31 4667 (2023)
  30. Hariton V, Fritsch K et al Opt. Express 31 19554 (2023)
  31. Bleotu P -G, Wheeler J et al High Pow Laser Sci Eng 11 (2023)
  32. Martyanov M, Ginzburg V et al High Pow Laser Sci Eng 11 (2023)
  33. Shang J, Mei Ch et al High Pow Laser Sci Eng 11 (2023)
  34. Zaripov M R, Alekseev V A et al Prib. Metody Izmer. 14 44 (2023)
  35. Zheltikov A M Opt. Lett. 48 5723 (2023)
  36. Vais O E, Lobok M G et al Jetp Lett. 118 875 (2023)
  37. Li Zh, Leng Yu, Li R Laser & Photonics Reviews 17 (1) (2023)
  38. Khazanov E High Pow Laser Sci Eng 11 (2023)
  39. Heyl Ch M, Seidel M et al J. Phys. Photonics 4 014002 (2022)
  40. Wheeler J, Bleotu G P et al Photonics 9 715 (2022)
  41. Fourmaux S, Lassonde P et al Opt. Lett. 47 3163 (2022)
  42. Khazanov E A Quantum Electron. 52 208 (2022)
  43. Mironov V A, Fadeev D A Radiophys Quantum El 65 32 (2022)
  44. Martyanov M, Mironov S et al J. Opt. Soc. Am. B 39 1936 (2022)
  45. Huang Ch, Zhao Q et al Opt. Express 30 37101 (2022)
  46. Martyanov M, Mironov S et al Optica High-brightness Sources and Light-driven Interactions Congress 2022, (2022) p. JTh4A.2
  47. Kotov A V, Esirkepov T Zh et al J. Inst. 17 P07035 (2022)
  48. Silin D, Khazanov E Opt. Express 30 4930 (2022)
  49. Viotti A-L, Seidel M et al Optica 9 197 (2022)
  50. Ribeyre X, Capdessus R et al Sci Rep 12 (1) (2022)
  51. Shaykin A, Ginzburg V et al Optica High-brightness Sources and Light-driven Interactions Congress 2022, (2022) p. HW4B.3
  52. Soloviev A, Kotov A et al Opt. Express 30 40584 (2022)
  53. Mitrofanov A V, Sidorov-Biryukov D A et al Optics Communications 502 127311 (2022)
  54. Bleotu P -G, Wheeler J et al High Pow Laser Sci Eng 10 (2022)
  55. Guo J, Gao Z et al High Pow Laser Sci Eng 10 (2022)
  56. Kim J I, Yoon J W et al Opt. Express 30 26212 (2022)
  57. Seidel M, Balla P et al Ultrafast Sci 2022 (2022)
  58. Kim J I, Kim Y G et al Opt. Express 30 8734 (2022)
  59. Ginzburg V, Yakovlev I et al The International Conference on Ultrafast Phenomena (UP) 2022, (2022) p. Tu2B.7
  60. Mironov S, Starodubtsev M, Khazanov E OSA Nonlinear Optics 2021, (2021) p. NF2A.7
  61. Mironov S Yu, Starodubtsev M V, Khazanov E A Opt. Lett. 46 1620 (2021)
  62. Khazanov E A Quantum Electron. 51 433 (2021)
  63. Nada Ya, Khazanov E Photonics 8 520 (2021)
  64. Mukhin I B, Soloviev A A et al Quantum Electron. 51 759 (2021)
  65. Stanfield M, Beier N F et al Opt. Express 29 9123 (2021)
  66. Li Zh, Kato Y, Kawanaka Ju Sci Rep 11 (1) (2021)
  67. Golovanov A A, Kostyukov I Yu Quantum Electron. 51 850 (2021)
  68. Mironov S, Khazanov E Laser Congress 2021 (ASSL,LAC), (2021) p. JTu1A.41
  69. Khazanov E Opt. Express 29 17277 (2021)
  70. Ginzburg V, Yakovlev I et al Opt. Express 29 28297 (2021)
  71. Garanin S G, Garnov S V et al Her. Russ. Acad. Sci. 91 250 (2021)
  72. Nagy T, Simon P, Veisz L Advances In Physics: X 6 (1) (2021)
  73. Shaykin A, Ginzburg V et al High Pow Laser Sci Eng 9 (2021)
  74. Mironov S Yu, Wheeler J A et al Opt. Lett. 46 4570 (2021)
  75. Fedorov E G, Zhukov A V et al Phys. Rev. B 103 (8) (2021)
  76. Ginzburg V, Yakovlev I et al Laser Congress 2021 (ASSL,LAC), (2021) p. AW2A.4
  77. Kuzmin I V, Mironov S Yu, Khazanov E A Quantum Electron. 50 354 (2020)
  78. Ginzburg V, Yakovlev I et al Phys. Rev. A 101 (1) (2020)
  79. Sofonov A O, Mironov V A Quantum Electron. 50 361 (2020)
  80. Ginzburg V N, Yakovlev I V et al Quantum Electron. 50 331 (2020)
  81. Ginzburg V N, Kochetkov A A et al Radiophys Quantum El 62 849 (2020)
  82. Soloviev A A, Kotov A V et al Quantum Electron. 50 1115 (2020)
  83. Mironov S Yu, Fourmaux S et al 116 (24) (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions